

JHEP, 06:106, 2017 Phys. Lett., B770:380–402, 2017

Measurement of W/Z γ scatterings at LHC with Run-1 data and constraints on anomalous couplings

The Third China LHC Physics Workshop

Daneng Yang for the CMS Collaboration

Dec 22nd-24th, 2017 Nanjing University, Nanjing

Motivations

Standard Model Physics group in the

CMS experiment

- Novel and Precise Electroweak test
- Improve controls of backgrounds for new physics searches
- Improve measurements of gaugeboson self-interactions -- tri-linear interactions and quartic interactions

Phys. Lett., B770:380-402, 2017

Pure EW production is sensitive to the gauge structure of underlying theory and can

be sensitive to new physics

- Large QCD-induced background
- Use vector boson fusion/scattering
 to enhance EW contribution

The Analysis Framework

Dataset

Event generation and simulation

- Event reconstruction
- Physics analysis
 - Background modelling
 - Systematic uncertainties
 - Event selection and statistical analysis

Theoretical predictions rely on MC event generators:

MadGraph, Powheg, VBFNLO, Pythia, Sherpa ...

Processes	Туре
Signal: EWK Wy+2jets	MC
QCD W γ +(0-3) <i>jets</i> (MLM matching)	MC shape + data-driven normalization
Wy+jets/multi-jets with one jet fakes a photon	Data + MC truth
γ+jets with one jet fakes an electron	Data
$t\bar{t}\gamma$	MC
Single top	MC NLO
WZγ	MC
WW	MC NLO
ZZ	MC NLO
QCD Zy+(0-3)jets (MLM matching)	MC

1 1m 2m **1** 3m Event generation and simulation Electror Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutron Photon 0 Background modelling Systematic uncertainties Electromagneti Calorimeter Hadron Superconducting Calorimete Solenoid Iron return voke interspersed with Muon chambers through CMS

The Particle Flow algorithm

Event reconstruction

Physics analysis

Dataset

Attempt to reconstruct all stable particles in an event

Event selection and

statistical analysis

- Combine Information from subdetectors in best possible way
- List of particles is returned

Higher level physics objects can be built from list of particles

- 1. Missing transverse energy
- 2. Jets
- 3. b-tagged jets
- 4. Hadronic taus*

- Dataset
- Event generation and simulation
- Event reconstruction
- Physics analysis
 - Background modelling
 - Systematic uncertainties
 - Event selection and statistical analysis

Muon

- ID efficiency 80%, veto ID efficiency 90%
- PF based relative isolation with DeltaBeta correction, RellsoPF < 0.12

Electron

- Cut based medium ID; ID eff. 80%, veto ID eff. 90%
- PF based relative isolation with EA correction

Jets

- Anti- k_T PF jets with $\Delta R = 0.5$
- Charged Hadron not from PV removed
- Jet Energy Correction

Missing Transverse Energy (Wgamma)

- PF MET > 35 GeV
- Type 1 corrected (energy scale)
- $\Delta \phi_{MET.j1} > 0.4$, $\Delta \phi_{MET.j2} > 0.4$

Photons

- 2012 cut base ID
- PF isolation with EA correction
- $E_T > 22 \text{ GeV}$
- Barrel region only ($|\eta|$ < 1.4442)
- $\Delta R_{j\gamma} > 0.5$, $\Delta R_{l\gamma} > 0.5$

- Dataset
- Event generation and simulation
- Event reconstruction

QCD

W/Z

ets

- Physics analysis
 - Background modelling
 - Systematic uncertainties
 - Event selection and statistical analysis

Data driven bakcgrounds: Ordered with decreasing size

Photon contamination

Fake photon fraction (FF) = $\frac{D(QCD \text{ only})}{D}$

The normalized photon like jet sample provides photon contamination background for any kinematic distributions.

QCD Wy+jets Mjj control region

(QCD Zγ+jets in VBS Zgamma)

Normalize the contribution at low mjj

- 200 GeV < Mjj < 400 GeV
- Base line selections

Muon channel normalization scale factor: 0.772 ± 0.048 Electron channel normalization scale factor: 0.773 ± 0.055 Theory K-factor from VBFNLO: 0.93 ± 0.27

γ+jets to electron contamination

The shape of MET is used to extract the electron **contamination rate**. Method similar to the estimation of photon contamination.

Dataset

- Event generation and simulation
- Event reconstruction
- **Physics analysis**
 - Background modelling
 - Systematic uncertainties
 - Event selection and statistical analysis

Small systematic uncertainties with data

- Luminosity 2.6% for rereco, 4.4% for prompt reco
- PU Modeling 1%
- Photon energy scale 1%
- Trigger 1%
- Lepton RECO/ID efficiency Scale factor 2%
- Jet energy scale and resolution uncertainty
- Jet anti-b tag uncertainty (Top background only)

CONE

10% in a jet

> neutral hadron

(90%) are measured better than neutral hadrons (10%)

- Tracking: resolution < 1%
- Photons: $2.7\%/\sqrt{E \oplus 0.5\%}$ barrel
- $5.7\%/\sqrt{E \oplus 0.5\%}$ endcaps
- HCAL resolution for hadrons: • 120% /√E

From Florian Beaudette's (LLR) talk

- Dataset
- Event generation and simulation
- Event reconstruction
- Physics analysis
 - Background modelling
 - Systematic uncertainties
 - Event selection and statistical analysis

VBS Wgamma for example

- Theoretical uncertainty: PDF unc. and Scale unc. 10-25%, Scale unc. > PDF unc.
- Uncertainties with background modelling

Photon contamination background uncertainty:

- Sideband+stat.+Shape
- From 13% at p_T^{γ} ~25 GeV to 54% at p_T^{γ} > 135 GeV
- Electron contamination background uncertainty:
 - Statistical uncertainty:16.7%
 - Systematical uncertainty: 5.2%

QCD Wγ+jets:

Normalization uncertainty. 6.2%(muon) / 7.1%(electron)

Additional uncertainty on the extrapolation from low Mjj to high Mjj

Dataset

• Event generation and simulation

• Event reconstruction

Physics analysis

- Background modelling
- Systematic uncertainties
- Event selection and statistical analysis (Next section)

VBS Wgamma cont'd

• Jet anti-b tag uncertainty

Scale factor 96.6% for combined secondary vetex algorism, with 2% uncertainty.

This uncertainty is propagated to the signal region and leads to 8.3% uncertainty for the $t\bar{t}\gamma$ process and 22.6% uncertainty for the single top process.

Source	Uncertainty	-
QCD $Z\gamma$ + jets normalization	$22\% (400 < M_{jj} < 800 \text{GeV})$	-
	$24\% (M_{jj} > 800 \text{GeV})$	Table of
Fake photon from jet	15% (20–30 GeV)	Uncertainties
$(p_{\rm T}^{\gamma} {\rm dependent})$	22% (30–50 GeV)	
	49% (>50 GeV)	for the
Trigger efficiency	$1.2\%~({ m Z} o \mu^+\mu^-)$, $1.7\%~({ m Z} o { m e^+e^-})$	VBS Zaamma
Lepton selection efficiency	$1.9\%~(\mathrm{Z} ightarrow \mu^+ \mu^-)$, $1.0\%~(\mathrm{Z} ightarrow \mathrm{e^+ e^-})$	j
Jet energy scale and resolution	14% ($M_{ m jj} > 400{ m GeV}$)	analysis
t $\bar{t}\gamma$ cross section	20% [3]	
Pileup modeling	1.0%	_
Renormalization/	9.0% (400 $< M_{jj} < 800 \text{GeV}$), 12% ($M_{jj} > 800 \text{GeV}$) (SM)	-
factorization scale (signal)	14% (aQGC)	
PDF (signal)	4.2% (400 < $M_{\rm jj}$ < 800 GeV), 2.4% ($M_{\rm jj}$ > 800 GeV) (SM)	
	4.3% (aQGC)	
Interference (signal)	$18\% (400 < M_{jj} < 800 \text{GeV}), 11\% (M_{jj} > 800 \text{GeV}) (SM)$	_
Luminosity	2.6%	-

Cross section measurements

Data and MC Comparison

Wy+2jets cross section measurement

Cross section measurement (EWK and EWK+QCD)

- Fiducial region cross section
 - $p_{\rm T}^{j1} > 30$ GeV, $|\eta^{j1}| < 4.7$,
 - $p_{\rm T}^{j2} > 30$ GeV, $|\eta^{j2}| < 4.7$,
 - $M_{jj} > 700 \text{ GeV}, |\Delta \eta(j, j)| > 2.4,$
 - $p_T^l > 20 \text{ GeV}, |\eta^l| < 2.4,$
 - $p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.4442,$
 - $E_T > 20$ GeV,
 - $\Delta R_{j,j}, \Delta R_{l,j}, \Delta R_{\gamma,j}, \Delta R_{l,\gamma} > 0.4.$

Items	EWK measurement	EWK+QCD measurement
û	$1.78^{+0.99}_{-0.76}$	$0.99\substack{+0.21\\-0.19}$
EWK fraction (search region)	100%	27.1%
EWK fraction (fiducial region)	100%	25.8%
Observed (Expected) significance	2.67(1.52) σ	7.69(7.49) σ
Theory cross section (fb)	6.1 ± 1.2 (scale) ± 0.2 (PDF)	23.5 ± 6.6 (scale) ± 0.8 (PDF)
Measured cross section (fb)	$10.8\pm4.1~(\text{stat.})\pm3.4~(\text{syst.})\pm0.3~(\text{lumi.})$	23.2 ± 4.3 (stat.) ± 1.7 (syst.) ± 0.6 (lumi.)

Good agreement with theory predictions.

Zy+2jets cross section measurement

Observed (Expected) significance	3.0 (2.1) σ	5.7 (5.5) σ
Theory cross section (fb)	$1.27 \pm 0.11 (scale) \pm 0.05 (PDF)$	$5.05 \pm 1.22 (scale) \pm 0.31 (PDF)$
Measured cross section (fb)	$\begin{array}{l} 1.86\substack{+0.90\\-0.75}(stat)\substack{+0.34\\-0.26}(syst)\\ \pm\ 0.05(lumi) \end{array}$	$5.94^{+1.53}_{-1.35}(stat)^{+0.43}_{-0.37}(syst)$ $\pm 0.13(lumi)$

Constraints on anomalous gauge couplings

Constraints on anomalous gauge couplings

Modified selections for the aQGC study: VBS Wgamma

• $p_{\rm T}^{\gamma} > 200 \, {\rm GeV}$

•
$$|y_{W\gamma} - \frac{y_{j1} + y_{j2}}{2}| < 1.2, |\Delta \eta_{jj}| > 2.4$$

VBS Zgamma

$$\begin{array}{l} p_T^{j1,j2} > 30 \,\, {\rm GeV}, \, |\eta^{j1,j2}| < 4.7 \\ M_{jj} > 400 \,\, {\rm GeV}, \, \Delta\eta_{jj} > 2.5 \\ p_T^{l1,2} > 20 \,\, {\rm GeV}, \, |\eta^{l1,l2}| < 2.4 \\ 70 \,\, {\rm GeV} < M_{ll} < 110 \,\, {\rm GeV} \\ p_T^{\gamma} > 60 \,\, {\rm GeV}, \, |\eta^{\gamma}| < 1.4442 \end{array}$$

Comparison with existing limits

$L_{M,i}$: Operators containing $D_{\mu}\Phi$ and field strength

CMS EWK ss WW $\rightarrow \ell^+ \ell^- \ell^+ \ell^- qq$: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015) CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014) CMS $\gamma\gamma \rightarrow W^+W^- \rightarrow e^+\mu^-$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^+\ell^-\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions <u>CMS-PAS-SMP-14-018</u> CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^+\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions <u>CMS-PAS-SMP-14-011</u> CMS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^+\ell^-\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions <u>Submitted to JHEP</u>

ATLAS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802

$L_{T,i}$: Operators containing just the field strength tensor

https://twiki.cern.ch/twiki/bin/view/CMSPu blic/PhysicsResultsSMPaTGC

- Several results from 13 TeV analyses
- We still have most stringent limits for some of the parameters

Summary

- At 8 TeV LHC, we measured the VBS W/Z gamma scatterings in the CMS experiment. The significances wrt no EWK signal are found to be 2.7 (3.0) σ for W(Z) gamma scatterings.
- Cross sections of W(Z)gamma production in association with two jets are measured in the fiducial regions. Good agreements with the standard model predictions are observed.
- Experimental limits on dimension eight anomalous quartic gauge couplings $f_{M,0-7}/\Lambda^4$, $f_{T,0-2}/\Lambda^4$, and $f_{T,5-9}/\Lambda^4$ are set at 95% confidence level.
- See Meng Lu's talk for an update of 13 TeV measurement.