Studies of $Z\gamma$ electroweak production in association with a high-mass di-jet system

Bo Liu on behalf of the ATLAS collaboration

3rd CLHCP conference , Nanjing, China, 2017.12. 22-2017.12. 24

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Two boson scattering is the key process to probe electroweak theory and measure the vector boson self-coupling.
- * Important for independently testing the quartic gauge-boson coupling (QGCs).
- QGCs can be studied either by 3 bosons final state or electroweak vector boson production (VBS process)
 - With photon is more promised due to its relative larger rate than leptonic W/Z processes.
- Study on VBS process helps to explore the anomalous QGC (aQGC), especially in high photon energy region.

Object definition

Electron

- E_T >25 GeV with $|\eta| < 2.47$
- loose identification
- E_{T} cone³⁰ / E_{T} < 0.1
- ID track with $|z0\sin(\theta)| < 0.5$ mm
- ID track with $d0/\sigma(d0) < 6$
- Muon •
 - $p_T > 25 \text{ GeV with } |\eta| < 2.47$

 - $p_T > 25 \text{ GeV with } |\eta| < 2.47$ Good associated ID track same impact parameters requirement as electron $\frac{1}{100}$
 - $p_T^{cone30}/p_T < 0.1$
- Photon *
 - $|\eta| < 2.47$ (without 1.37 < $|\eta| < 1.52$)
 - E_Tcone40<6 GeV
 - Remove photon when $\Delta R(\gamma, \ell) < 0.4$

* Jet

- Anti- $k_T R=0.4$ jet
- p_T >30 GeV with $|\eta| < 4.5$
- JVF >0.5 (associate tracks to jet with ΔR <0.4) for jet with p_T <50 GeV and $|\eta|$ <2.4
- Remove jet when $\Delta R(j, \ell) < 0.3$ or $\Delta R(j, \gamma) < 0.3$

Event Selection

*ℓℓγ*jj selections

- One photon with $E_T > 15$ GeV,
- Opposite-sign and same flavour leptons
- At lease two well reconstructed jets
- $m_{\ell\ell}$ >40 GeV, $m_{\ell\ell}$ + $m_{\ell\ell\gamma}$ >182 GeV
- Categorise event according to m_{jj} value
- Phase space region is optimised for aQGC with photon $E_T > 250$ GeV.

Event Selection

*ℓℓγ*jj selections

- One photon with $E_T > 15$ GeV,
- Opposite-sign and same flavour leptons
- At lease two well reconstructed jets
- $m_{\ell\ell}$ >40 GeV, $m_{\ell\ell}$ + $m_{\ell\ell\gamma}$ >182 GeV
- Categorise event according to m_{jj} value
- Phase space region is optimised for aQGC with photon E_T> 250 GeV
- Centrality observable (ζ) is used to discriminate Zγjj EWK and QCD production and is used to extract cross section

$$\bar{T}_{Z\gamma} = \left| \frac{\eta_{Z\gamma} - \bar{\eta}_{jj}}{\Delta \eta_{jj}} \right|, \bar{\eta}_{jj} = \frac{n_{j_1} + n_{j_2}}{2}, \Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2}$$

Event Selection

*ℓℓγ*jj selections

- One photon with $E_T > 15$ GeV,
- Opposite-sign and same flavour leptons
- At lease two well reconstructed jets
- $m_{\ell\ell} > 40 \text{ GeV}, m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$
- Categorise event according to m_{jj} value
- Phase space region is optimised for aQGC with photon E_T> 250 GeV
- Centrality observable (ζ) is used to discriminate Zγjj EWK and QCD production and is used to extract cross section
- vvγjj selections
 - $E_T^{miss} > 100 \text{ GeV}$
 - One photon with $E_T > 150$ GeV,
 - At lease two well reconstructed jets
 - Veto leptons
 - $\Delta \phi(p_T^{\text{miss}}, \gamma j j) > 3\pi/4, \Delta \phi(p_T^{\text{miss}}, \gamma) > \pi/2, \Delta \phi(p_T^{\text{miss}}, j) > 1$

 $p_{\rm T}^{\rm balance} \equiv \frac{|\vec{p}_{\rm T}^{\rm miss} + \vec{p}_{\rm T}^{\gamma} + \vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2}|}{E_{\rm T}^{\rm miss} + |\vec{p}_{\rm T}^{\gamma}| + |\vec{p}_{\rm T}^{j_1}| + |\vec{p}_{\rm T}^{j_2}|}$

- $|\Delta y_{jj}| > 2.5$ with photon centrality $\zeta_{\gamma} < 0.3$
- $p_{T}^{balance} < 0.1$

$$\begin{bmatrix} 0 & 150 & 500 & m_{jj} [GeV] \\ \zeta_{Z\gamma} = \left| \frac{\eta_{Z\gamma} - \bar{\eta}_{jj}}{\Delta \eta_{jj}} \right|, \bar{\eta}_{jj} = \frac{n_{j_1} + n_{j_2}}{2}, \Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2}$$

Background estimation (*llyjj*)

- *ℓℓγ***jj** channel main backgrounds come from Zjet with jet faking photon,
 - Its contribution is estimated by using 2D sidebands
 - An enlarged region (m_{jj}>100 GeV) is used for estimation
 - Contribute to SR with $(23\pm6)\%$ of $Z\gamma$ events
 - Main source of systematics uncertainty due to the correlation between two variables
 - Checked with MC for different generators
 - Systematics related to other sources (CR definition, signal contamination and mjj difference between Zjet and Zγ) are found to be negligible
- Other background contribution like WZ+jet, ttγ are estimated from MC prediction

Background estimation (vvyjj)

 $vv\gamma jj$ channel, the dominate background contribution is $W(\ell v)\gamma + jets$ (59%).

- This background is estimated from a CR by requiring one charged lepton instead of vetoing with purity of 80%.
- The correction factor (1.06) is derived from CR and applied to SR. The dominant systematic uncertainty is estimated by comparing different generators and found to be 41%.
- * Followed backgrounds is Z(vv)+jets,
 - Estimated by using 2D sidebands method
 - Estimation is dominant by statistical uncertainty (50 %) compare to systematic uncertainty (20%)
- * γ+jets with fake MET
 - 2D sideband method with E_T^{miss} and $\Delta \phi(p_T^{miss}, \gamma)$
 - A looser photon energy requirement (45 GeV)
 - Difference between Sherpa and Alpgen results for extrapolating to SR is the dominant uncertainty
- * W+jets:
 - Estimated by applying fake factor $(e \rightarrow \gamma)$ to W+jets CR with high momentum electron instead of photon
 - Statistis in CR contribute 43% uncertainty

Summary of systematic uncertainties

* Systematic uncertainties in charged channel for ee(mm) SR

Source of	EWK y	ield [%]	QCD yield $[\%]$		Bkg. yield $[\%]$	
uncertainty	CR	SR	CR	\mathbf{SR}	CR	SR
Trigger	0.2(0.4)					
Pile-up	0.6					
Lepton selection			3.8(2)	2.3)		
Photon selection			1.	6		
Jet reconstruction	1.1	2.5	5.0	12	4.9	12
Bkg. 2D sideband	-	-	-	-	26	26
Total experimental	4.3(3.1)	4.9(3.8)	6.5(5.8)	13(12)	27(27)	29(29)
Theory	5.2	8.7	5.6	3.8	5.6	3.8

Summary of systematic uncertainties

* Systematic uncertainties in charged channel for ee(mm) SR

Source of	EWK y	ield [%]	QCD yield $[\%]$		Bkg. yield $[\%]$	
uncertainty	CR	SR	CR	\mathbf{SR}	CR	SR
Trigger	0.2 (0.4)					
Pile-up	0.6					
Lepton selection			3.8(2)	2.3)		
Photon selection			1.	6		
Jet reconstruction	1.1	2.5	5.0	12	4.9	12
Bkg. 2D sideband	-	-	-	-	26	26
Total experimental	4.3(3.1)	4.9(3.8)	6.5(5.8)	13(12)	27(27)	29(29)
Theory	5.2	8.7	5.6	3.8	5.6	3.8

* Systematic uncertainties in aQGC region

Source of	EWK yie	eld [%]	QCD yie	eld [%]
uncertainty	$\ell^+\ell^-$ channel	$\nu\bar{\nu}$ channel	$\ell^+\ell^-$ channel	$\nu\bar{\nu}$ channel
Trigger	0.2 (0.4)	2	0.2 (0.4)	2
Pile-up		0.	.6	
Lepton selection	3.8~(2.3)	-	3.8~(2.3)	-
$E_{\rm T}^{\rm miss}$ reconstruction	-	0.4	-	0.4
Photon selection	6.5	3.3	6.5	3.3
Jet reconstruction	2.5	3.2	12	3.2
Total experimental	8.0(7.4)	5.1	13	5.1
Theory	8.7	4.1	3.8	4.1

Distributions after final selections

	Inclusive region		Contro	Control region		region
	$Z(\ell^+\ell^-)\gamma$	$+ \ge 2$ jets	$150 < m_{jj}$	$150 < m_{jj} < 500 \text{ GeV}$		00 GeV
	e ⁺ e [−] γjj	μ⁺µ⁻γjj	e ⁺ e [−] γjj	$\mu^+\mu^-\gamma jj$	e ⁺ e [−] γjj	$\mu^+\mu^-\gamma jj$
Data	781	949	362	421	58	72
Z+jets bkg.	134 ± 36	154 ± 42	57 ± 16	67 ± 18	8.5 ± 2.5	9.4 ± 2.7
Other bkg. $(t\bar{t}\gamma, WZ)$	88 ± 17	91 ± 18	47 ± 9	46 ± 9	5.8 ± 1.1	5.0 ± 1.0
$N_{\rm data} - N_{\rm bkg}$	559 ± 46	704 ± 53	258 ± 24	308 ± 27	44 ± 7	58 ± 8
$N_{Z\gamma QCD}$ (Sherpa MC)	583 ± 41	671 ± 47	249 ± 24	290 ± 26	37 ± 5	41 ± 5
$N_{Z\gamma EWK}$ (Sherpa MC)	25.4 ± 1.5	27.3 ± 1.7	8.6 ± 0.6	9.3 ± 0.6	11.2 ± 0.8	11.6 ± 0.7
$N_{Z\gamma}$ (Sherpa MC)	608 ± 42	698 ± 49	258 ± 25	299 ± 27	48 ± 6	53 ± 6

Fiducial cross sections (charged channel)

Fiducial cross sections (charged channel)

*

Fiducial cross sections (charged channel)

* The fiducial EWK cross section from data is derived in charged lepton channel from signal strength times the fiducial cross section predicted by Sherpa MC $\mu = \frac{N_{data}^{signal}}{\mu = \frac{\sigma_{data}}{\sigma_{data}}} = \frac{\sigma_{data}}{\sigma_{data}}$

$$l = \frac{\sigma_{\rm MC}}{N_{\rm MC}^{\rm signal}} = \frac{\sigma_{\rm MC}}{\sigma_{\rm MC}}$$

 Total (EWK+QCD) cross sections are also derived with SR and CR separately

Objects	Particle- (Parton-) level selection
Leptons	$p_{\rm T}^{\ell} > 25 \text{ GeV and } \eta^{\ell} < 2.5$
	Dressed leptons, OS charge
Photon (kinematics)	$E_{\rm T}^{\gamma} > 15 \text{ GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell,\gamma) > 0.4$
Photon (isolation)	$E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\gamma}$ (no isolation)
FSR cut	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$
	$m_{\ell\ell} > 40 \text{ GeV}$
Particle jets (Outgoing partons)	At least two jets (outgoing partons)
(j = jets)	$E_{\rm T}^{j(p)} > 30 \text{ GeV}, \eta^{j(p)} < 4.5$
(p = outgoing quarks or gluons)	$\Delta R(\ell, j(p)) > 0.3$
	$\Delta R(\gamma, j(p)) > 0.4$
Control region (CR)	$150 < m_{jj(pp)} < 500 \text{ GeV}$
Search region (SR)	$m_{jj(pp)} > 500 \text{ GeV}$
aQGC region	$m_{jj(pp)} > 500 \text{ GeV}$
	$E_{\rm T}^{\gamma} > 250 { m GeV}$

Distributions for aQGC region

(à)	
R. C	
· · · · · · · · · · · · · · · · · · ·	1 m

	aQGC region			
	$m_{jj} > 500 \text{ GeV}$	$m_{jj} > 600 \text{GeV}$		
	$E_{\rm T}^{\tilde{\gamma}} > 250 {\rm GeV}$	$E_{\rm T}^{\gamma} > 150 {\rm GeV}$		
	$\ell^+\ell^-\gamma jj$	ννγjj		
Data	2	4		
Z+jets background	0.28 ± 0.08	0.3 ± 0.2		
$W(\ell \nu)\gamma$ +jets background	-	1.1 ± 0.5		
γ +jets background	-	0.13 ± 0.08		
W(ev)+jets background	-	0.09 ± 0.04		
$t\bar{t}\gamma$, WZ background	0.02 ± 0.01	-		
$N_{\rm data} - N_{\rm bkg}$	1.7 ± 1.4	2.4 ± 2.0		
$N_{Z\gamma QCD}$ (Sherpa MC)	1.2 ± 0.4	0.29 ± 0.07		
$N_{Z\gamma EWK}$ (Sherpa MC)	0.41 ± 0.04	0.65 ± 0.05		
$N_{Z\gamma}$ (Sherpa MC)	1.6 ± 0.4	0.9 ± 0.1		

An effective field theory with higher dimensional operators is used to model the anomalous couplings

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j$$

Dimension-6

Dimension-8 operators is the lowest dimension to induce only QGC without TGC * (triple gauge coupling)

An effective field theory with higher dimensional operators is used to model the anomalous couplings $\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} f_i$

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j$$

Dimension-6

- Dimension-8 operators is the lowest dimension to induce only QGC without TGC (triple gauge coupling)
- * Coefficient f_j induced γ vertices can be sub-categorized as $f_{T, x}$, (contain field tensor) $f_{M, x}$ (contains both Higgs SU(2) double derivatives and filed tensor)
- * Charged aQGC (WWZ γ) can only be induced by the $f_{M,x}$ (x=0...7) and $f_{T,x}$ (x=0...7), the neutral aQGC ZZZ γ and ZZ $\gamma\gamma$ can be induced by $f_{M,x}$ (x=0...7) and $f_{T,x}$ (x=0...9) operators and $Z\gamma\gamma\gamma$ can only be modified by $f_{T,x}$ (x=0...9) operators

An effective field theory with higher dimensional operators is used to model the anomalous couplings f_i f_i

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j$$

Dimension-6

- Dimension-8 operators is the lowest dimension to induce only QGC without TGC (triple gauge coupling)
- * Coefficient f_j induced γ vertices can be sub-categorized as $f_{T, x}$, (contain field tensor) $f_{M, x}$ (contains both Higgs SU(2) double derivatives and filed tensor)
- * Charged aQGC (WWZ γ) can only be induced by the $f_{M,x}$ (x=0...7) and $f_{T,x}$ (x=0...7), the neutral aQGC ZZZ γ and ZZ $\gamma\gamma$ can be induced by $f_{M,x}$ (x=0...7) and $f_{T,x}$ (x=0...9) operators and $Z\gamma\gamma\gamma$ can only be modified by $f_{T,x}$ (x=0...9) operators
- * Following coefficients are probed in this analysis:

$$f_{\rm T,0}/\Lambda^4, f_{\rm T,8}/\Lambda^4, f_{\rm T,9}/\Lambda^4$$

 $f_{\rm M,0}/\Lambda^4, f_{\rm M,1}/\Lambda^4, f_{\rm M,2}/\Lambda^4, f_{\rm M,3}/\Lambda^4$

- * Sample are generated with aQGC for each coefficient to study efficiency
- * The aQGC cross sections are parametrised as the function of each coefficient as 2order polynomial

aQGC limit

* Feldman-Cousins method is used to derive limit on aQGC.

• Only one dimensional limits are derived and presented.

	Limits 95% CL	Measured $[TeV^{-4}]$	Expected $[\text{TeV}^{-4}]$
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\rightarrow \ell \bar{\ell} / \nu \bar{\nu}) \gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\to \ell \bar{\ell})\gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71, 75]	[-109, 111]
Phys. Lett. B 770 (2017) 380	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
	f_{M2}/Λ^4	[-32, 31]	[-47, 47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]
	f_{T0}/Λ^4	[-5.4, 5.6]	[-3.2, 3.4]
	f_{M0}/Λ^4	[-77, 74]	[-47, 44]
CMS $W(\rightarrow \ell \nu)\gamma$ -EWK	f_{M1}/Λ^4	[-125, 129]	[-72, 79]
IHEP 06 (2017) 106	f_{M2}/Λ^4	[-26, 26]	[-16, 15]
JIIII 00 (2017) 100	f_{M3}/Λ^4	[-43, 44]	[-25, 27]

- The study of Zγ with high mass 2j system with ATLAS 8 TeV dataset is presented
- Charged lepton and neutral lepton channels are considered
 - Charged lepton channel is used for both fiducial cross section measurement and test the aQGC
 - Neutral channel is only used to test aQGC and been firstly considered in LHC
- * Both EWK production and inclusive production of $Z\gamma$ +2j in fiducial region are measured (with probe of EWK production of 2.0 σ (1.8 σ exp.)) and found to be consistent with NLO theoretical predictions.
- aQGC is test with EFT framework

Summary

- No significant excess is found.
- > 95% limits on EFT dimension-8 operators coefficients are derived.
- By combining charged and neutral channels, gives most stringent limits on aQGC in LHC.
- Results is published in JHEP (<u>JHEP07(2017)107</u>)
- * Will have more exciting results in Run-II

	WWWW	WWZZ	ZZZZ	$WW\gamma Z$	WWγγ	ZZZγ	ΖΖγγ	Ζγγγ	γγγγ
$\mathscr{L}_{S,0}, \mathscr{L}_{S,1}$	Х	X	X	0	0	0	0	0	0
$\mathscr{L}_{M,0}, \mathscr{L}_{M,1}, \mathscr{L}_{M,6}, \mathscr{L}_{M,7}$	Х	X	X	X	X	X	Х	0	Ο
$\mathscr{L}_{M,2}, \mathscr{L}_{M,3}, \mathscr{L}_{M,4}, \mathscr{L}_{M,5}$	0	X	X	X	X	X	Х	0	Ο
$\mathscr{L}_{T,0}, \mathscr{L}_{T,1}, \mathscr{L}_{T,2}$	Х	X	X	X	X	X	Х	X	Х
$\mathscr{L}_{T,5}, \mathscr{L}_{T,6}, \mathscr{L}_{T,7}$	0	X	X	X	X	X	Х	X	Х
$\mathscr{L}_{T,8}, \mathscr{L}_{T,9}$	0	0	X	0	0	X	X	X	Х

	Limits 95% CL	Measured $[\text{TeV}^{-4}]$	Expected $[\text{TeV}^{-4}]$	$\Lambda_{\rm FF}$ [TeV]
	f_{T9}/Λ^4	$[-4.6, 4.6] \times 10^3$	$[-3.9, 3.9] \times 10^3$	
	f_{T8}/Λ^4	$[-2.2, 2.2] \times 10^3$	$[-1.8, 1.9] \times 10^3$	
	f_{T0}/Λ^4	$[-2.2, 2.1] \times 10^1$	$[-1.9, 1.8] imes 10^1$	
n = 0	f_{M0}/Λ^4	$[-2.0, 2.0] \times 10^2$	$[-1.7, 1.7] \times 10^2$	
	f_{M1}/Λ^4	$[-4.4, 4.5] \times 10^2$	$[-3.7, 3.7] \times 10^2$	
	f_{M2}/Λ^4	$[-1.1, 1.1] \times 10^3$	$[-9.5, 9.5] imes 10^2$	
	f_{M3}/Λ^4	$[-2.1, 2.1] \times 10^3$	$[-1.8, 1.8] \times 10^3$	
	f_{T9}/Λ^4	$[-7.6, 7.6] \times 10^4$	$[-6.3, 6.2] \times 10^4$	0.7
	f_{T8}/Λ^4	$[-3.6, 3.6] \times 10^4$	$[-3.0, 3.0] \times 10^4$	0.7
n=2	f_{T0}/Λ^4	$[-8.6, 7.8] \times 10^1$	$[-7.3, 6.5] imes 10^1$	1.7
	f_{M0}/Λ^4	$[-1.2, 1.1] \times 10^3$	$[-9.7, 9.4] \times 10^2$	1.0
	f_{M1}/Λ^4	$[-2.0, 2.0] \times 10^3$	$[-1.6, 1.7] \times 10^3$	1.2
	f_{M2}/Λ^4	$[-1.3, 1.3] \times 10^4$	$[-1.1, 1.1] \times 10^4$	0.7
	f_{M3}/Λ^4	$[-2.0, 1.9] \times 10^4$	$[-1.6, 1.6] \times 10^4$	0.8

Neutral

	Limits 95% CL	Measured $[TeV^{-4}]$	Expected $[\text{TeV}^{-4}]$	$\Lambda_{\mathrm{FF}} \ [\mathrm{TeV}]$
	f_{T9}/Λ^4	$[-5.8, 6.0] \times 10^3$	$[-3.5, 3.7] \times 10^3$	
	f_{T8}/Λ^4	$[-2.6, 2.6] \times 10^3$	$[-1.6, 1.7] \times 10^3$	
	f_{T0}/Λ^4	$[-2.2, 1.6] \times 10^1$	$[-2.1, 1.5] \times 10^1$	
n = 0	f_{M0}/Λ^4	$[-1.7, 2.1] \times 10^2$	$[-1.7, 2.1] \times 10^2$	
	f_{M1}/Λ^4	$[-4.0, 3.9] \times 10^2$	$[-3.8, 3.8] \times 10^2$	
	f_{M2}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-1.0, 1.0] \times 10^3$	
	f_{M3}/Λ^4	$[-2.3, 2.4] \times 10^3$	$[-1.8, 1.8] \times 10^3$	
	f_{T9}/Λ^4	$[-1.2, 1.2] \times 10^5$	$[-7.7, 7.2] \times 10^4$	0.7
	f_{T8}/Λ^4	$[-5.8, 5.5] \times 10^4$	$[-3.7, 3.5] \times 10^4$	0.7
n=2	f_{T0}/Λ^4	$[-8.8, 7.3] \times 10^1$	$[-7.7, 6.2] \times 10^1$	1.7
	f_{M0}/Λ^4	$[-1.2, 1.2] \times 10^3$	$[-1.2, 1.3] \times 10^3$	1.0
	f_{M1}/Λ^4	$[-2.0, 2.0] \times 10^3$	$[-1.9, 1.9] \times 10^3$	1.2
	f_{M2}/Λ^4	$[-1.3, 1.4] \times 10^4$	$[-1.3, 1.4] \times 10^4$	0.7
	f_{M3}/Λ^4	$[-2.6, 2.5] \times 10^4$	$[-2.0, 1.9] \times 10^4$	0.8

Charged

With VBFNLO implemented formulae

aQGC limit

* Feldman-Cousin method is used to derive limit on aQGC.

Only one dimensional limits are derived and presented.

	95% CL intervals	Measured $[\text{TeV}^{-4}]$	Expected $[\text{TeV}^{-4}]$	$\Lambda_{\rm FF}$ [TeV]
	f_{T9}/Λ^4	$[-4.1, 4.2] \times 10^3$	$[-2.9, 3.0] \times 10^3$	
	f_{T8}/Λ^4	$[-1.9, 2.1] \times 10^3$	$[-1.2, 1.7] \times 10^3$	
	f_{T0}/Λ^4	$[-1.9, 1.6] imes 10^1$	$[-1.6, 1.3] \times 10^1$	
n = 0	f_{M0}/Λ^4	$[-1.6, 1.8] \times 10^2$	$[-1.4, 1.5] \times 10^2$	
	f_{M1}/Λ^4	$[-3.5, 3.4] imes 10^2$	$[-3.0, 2.9] imes 10^2$	
	f_{M2}/Λ^4	$[-8.9, 8.9] \times 10^2$	$[-7.5, 7.5] \times 10^2$	
	f_{M3}/Λ^4	$[-1.7, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$	
	f_{T9}/Λ^4	$[-6.9, 6.9] \times 10^4$	$[-5.4, 5.3] \times 10^4$	0.7
	f_{T8}/Λ^4	$[-3.4, 3.3] \times 10^4$	$[-2.6, 2.5] \times 10^4$	0.7
n=2	f_{T0}/Λ^4	$[-7.2, 6.1] \times 10^1$	$[-6.1, 5.0] imes 10^1$	1.7
	f_{M0}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-8.8, 8.8] \times 10^2$	1.0
	f_{M1}/Λ^4	$[-1.6, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$	1.2
	f_{M2}/Λ^4	$[-1.1, 1.1] \times 10^4$	$[-9.2, 9.6] \times 10^3$	0.7
	f_{M3}/Λ^4	$[-1.6, 1.6] \times 10^4$	$[-1.4, 1.3] \times 10^4$	0.8

Form factor is introduced to restore unitarity at very high parton center-of-mass energy. The value is chosen to prevent unitarity violation up to 8 TeV with FF exponent n=2

$$f_i(\hat{s}) = \frac{f_i}{(1 + \hat{s}/\Lambda_{\rm FF}^2)^n}$$

 $\Lambda_{\rm FF}$ [TeV]

 $\Lambda_{\rm FF}$ [TeV]

Compare with different experiments

9

	Limits 95% CL	Measured $[TeV^{-4}]$	Expected $[\text{TeV}^{-4}]$
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\rightarrow \ell \bar{\ell} / \nu \bar{\nu}) \gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\to \ell \bar{\ell})\gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71, 75]	[-109, 111]
	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
	f_{M2}/Λ^4	[-32, 31]	[-47, 47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]
	f_{T0}/Λ^4	[-5.4, 5.6]	[-3.2, 3.4]
	f_{M0}/Λ^4	[-77, 74]	[-47, 44]
CMS $W(\to \ell \nu)\gamma$ -EWK	f_{M1}/Λ^4	[-125, 129]	[-72, 79]
	f_{M2}/Λ^4	[-26, 26]	[-16, 15]
	f_{M3}/Λ^4	[-43, 44]	[-25, 27]

With Madgraph implemented formulae