

ATLAS Phase-I upgrade Muon sTGC Front-End Electronics

<u>Feng Li</u>, Shengquan Liu, Peng Miao, Xinxin Wang, Tianru Geng, Shuang Zhou, Liang Han & Ge Jin

State Key Laboratory of Particle Detection and Electronics Depart of Modern Physics, University of Science & Technology of China

Dec. 22-24, CLHCP 2017

Univ. of Sci. & Tech. of CHN (USTC)

Introduction

19-20-26-00-97

- LHC will be upgraded to 14TeV proton-proton collision
 - ATLAS: Current SW has fake event up to 98%
 - Build a completely New Small Wheel (NSW)

Univ. of Sci. & Tech. of CHN (USTC)

NSW Detector

- sTGC: online trigger detector
- MicroMegas : offline tracking detector
- 768 sTGC modules
- sFEB to handle 512 Strip signals
- pFEB to handle pad/Wire signals for each moudle

Table 12.1: Some sTGC and MM parameters			
	sTGC	MM	
strip width	$3.2 \mathrm{mm}$	$0.5 \mathrm{mm}$	
strips/layer	$\sim \! 1050$	8,192	
strips/octant	17,260	131,072	
triggering pads/octant	2,362	_	
at $ \eta < 2.4$			
All pads/octant	2,738	_	
wires/octant	736	_	
channels/octant	20,734	131,072	
channels/two end-caps	331,744	2,097,152	
VMM chips/octant	382	2,048	
MM trigger elements	_	32,768	

SHIELDING

1/16 sTGC trigger diagram

- 768 sTGC module:
 - 768 Pad/Wire Front end boards(192 channels) in size 16.5*6cm
 - 768 StripFront end Boards(512 channels) in size 27*6cm
- More than 330,000 channels

pFEB/sFEB specification

- Read strip and pad/wire signals to VMM on sFEB and pFEB;
- 6B trigger of 2×VMM sent to TDS;
 10B data of each VMM to ROC
- pTDS → Pad Trigger, decision sent to sTDS; sTDS → Router
- Configurations and 40MHz clock
 L1DDC → ROC/SCA
- Components: VMM, TDS, SCA, ROC; FEAST; miniSAS; GFZ
- FEB design: strict PCB size limitation; short traces for analog and high speed data transmission; analogue/digital signals and grounds well separated; etc.

Path Towards VMM

VMM1 2011-12 50 mm² 500k FETs (8k/ch.)

- mixed-signal
- 2-phase readout
- peak and timing
- neighboring
- sub-hysteresis
- few timing outputs

- mixed signal
- continuous fully-digital readout
 - current-output peak detector
 - increased range of gains
- three ADCs per channel
- FIFOs, serialized data with DDR
- serialized ART with DDR
- additional timing modes
- 64 timing outputs
- ITAR
- additional functions and fixes

Designed at BNL

- mixed signal + digital
- continuous simultaneous readout
- SEU-tolerant logic
- deeply revised front-end for TGC (2nF, 50pC, fast recovery, ...)
- L0 handling digital core
- SLVS and new config. interface
- new reset control and fast reset
- timing at threshold
- timing ramp optimization
- pulser range extension
- ART synchronization
- 32-channel skip
- additional functions and fixes

Univ. of Sci. & Tech. of CHN (USTC)

- Pad/Strip trig data preprocessing
- Output: 128b@25ns, **5.1G**bps

Designed at UM

Integration test with mini-sTGC at UM

sFEB v1.0/1.1 based on VMM2 _____

- VMM configuration and raw data read out
- MiniSAS connectors added on sFEB v1.1 for data communication

sFEB v1.1 and pFEB v1.2

• NSW upgrade Committee visited USTC for site review in June 2016.

pFEB 2.0 board based on VMM3_NEK,

One FEAST module is used as analog power supply

pFEB/sFEB v2.1

- Based on VMM3
- pFEB: 16.5 × 6cm, 12 layers, 192 Channels;
- sFEB: 27 × 6cm, 14 layers, 512 channels;
- Used at WZ/CERN/McGill /SDU for chamber test

Date D

• Noise of pad signal on pFEB:

			IGNIM
Gain (mV/fC)	RMS (mV)	Amplitude (mV)	
0.5	0.41	2.5	
1	0.50	3.0	
3	0.44	4.9	2 800ns 1.25GS/s 2 / 2 200mV □→→313.6000ns 10k points 636mV
4.5	0.50	5.3	Value Mean Min Max Std Dev 2 RMS 568mV 569m 568m 571m 407μ 28 Jun 2 2 Mean 568mV 569m 568m 571m 407μ 13:03:30 2 Mean 568mV 569m 568m 571m 407μ 13:03:30 2 Amplitude 32.0mV 32.8m 32.0m 40.0m 2.48m

The typical intrinsic noise of pFEB is < 0.5mV for all gains

Electronics tests of sFEB v2.1

• Noise of strip signal on sFEB:

Gain (mV/fC)	RMS (mV)	Amplitude (mV)	$\mathbf{PT}=50\mathrm{ns}, \mathrm{Gain}=1\mathrm{mV/fC}$
0.5	0.42	3.2	1
1	0.50	3.8	
3	0.52	4.0	800ns 1.25GS/s 1) ∕ 1 20.0mV ∿ 10k points 97.6mV
4.5	0.54	4.2	Value Mean Min Max Std Dev 1 RMS 500µV 500µ 500µ 0.00 1 Peak-Peak 3.80mV 3.80m 3.80m 0.00 26 Sep 2017 1 Mean 30.0µV 30.0µ 30.0µ 0.00 10:58:18

The typical intrinsic noise of sFEB is $\sim 0.5 \text{mV}$ for all gains

FEB v2.1 sTGC test @ SDU & WZ <u>NEK</u>

- ➢ Full size QS2 with soldered adapter board and sFEB/pFEB
- External trigger by scintillator cosmic coincidence
- Configure and readout via a simple DAQ board
- ➢ Good detector grounding and efficient chip cooling are vital

- pFEB noise on sTGC @ WZ:
- Intrinsic noise of pFEB w/o sTGC is reported as 700-800e of ENC

When connected to a particular sTGC pad of ~ 2nF and powered up to 3.2kV, the level of noise is ~ 5200e ENC

FEB v2.1 sTGC test @ SDU & WZ <u>NEK</u>

• Cosmic signals:

Clean and good analog signals of both sFEB and pFEB can be observed.

Beam Test at CERN, October 5,2017 _____

Full setup with pFEB and sFEB installed

(reduced TTC, L1DATA to 80 Mbps; changed the firmware to support VMM daisy chain cfg.)

5th Oct.: Full setup (view from top)

sTGC Pad Efficiency

- 3 layers of sTGC measured for Pad efficiency
- Efficiency almost 100% when HV at 3kV

- NSW committee placed an order for 38 p/sFEB v2.1 for chamber production sites and CERN wedge test.
- Cost estimation for FEB
 - pFEB v2.1: 1945 CHF/board
 - sFEB v2.1: 2505 CHF/board
- Overall cost: 169,100 CHF
- Can cover the cost of FEAST/SCA ASICs and MiniSAS/POWER connectors we shall pay.

	•
HHR	versions

Version	Descriptions	Tests
v1.2 (2016.06)	VMM2; FPGA to configure/read VMM2 via Ethernet	Site review; TGC test @ SDU
v2.0 (2017.01)	VMM3 + TDS + 1FEAST; FPGA to configure/read VMM3; Separate SCA test board	VS2017.03
v2.1 (2017.06)	VMM3 + TDS + FEAST + SCA; ROC-like FPGA; miniSAS, no ethernet	VS2017.07; SDU & WZ
v2.2 (2017.12)	All-chip prototype	VS2018.01

p/sFEB v2.2

FEAST: POWER ASIC
VMM3: Front-end ASIC
TDS2: Trigger Data Serializer
GBT-SCA: Giga Bit Transceiver-Slow
Control Adapter ASIC
ROC: Read Out Controller for raw
data

Layout completed on November 2017. Have been sent out for production and soldering.

Summary

p/sFEB v2.1:

- > All ASICs on FEB can be configured by the full chain.
- The pFEB/sFEB noise level has been measured w/o and w/ full size sTGC detector. The intrinsic electronic noise RMS is ~ 0.5mV, and is less than 2.5mV when connected with powered sTGC.
- Clean analog signals of cosmic have been seen, and digital readout of VMM3 have been tested at chamber sites.
- ➢ No dead channel observed at chamber sites.

NEXT:

- Latest p/sFEB v2.2 will join the 5th VS in January 2018.
- ASIC chips for engineering and pre-production run will arrive in May 2018. The production of p/sFEB boards will start April 2018.
- ➢ Final production run will start in October 2018.
- ➤ Test and commissioning in 2018/2019.

THANKS!

Univ. of Sci. & Tech. of CHN (USTC)