

Search for excited B_c^+ states at LHCb

Liupan An

On behalf of the LHCb collaboration
Tsinghua University

CLHCP 2017, Dec 22nd 2017 @ Nanjing, China

Outline

https://arxiv.org/abs/1712.04094

- **≻**Introduction
- ➤ The LHCb detector
- ➤ Analysis strategy
- **≻**Selection
- **≻**Upper limits
- **≻**Summary

Introduction

7565 7571 7568

7563

7269 7276 7271

7266

- $\triangleright B_c^+$: the only meson family containing two different heavy flavor quarks
 - √ A rich mass spectrum predicted by various QCD potential models and Lattice QCD
 - ✓ States below BD threshold can only undergo radiative or hadronic transitions to the ground state B_c^+ which decays weakly

7600

7200

6800

6400

 B_c

- ✓Only B_c^+ and $B_c(2S)^+$ observed so far
- \triangleright ATLAS observed $B_c(2S)^+$ using $B_c^+\pi^+\pi^-$
 - √ No discrimination between

$$\circ B_c(2^1S_0)^+ \to B_c^+\pi^+\pi^-$$

$$\circ B_c(2^3S_1)^+ \to B_c^{*+}(\to B_c^+\gamma)\pi^+\pi^-$$

✓ No confirmation from other experiments yet

22/12/17

7455 7475 7487

7122 7150 7164

 $B_c(2S)^+$

7365 7376 7380

7041 7045

B_a Mass Spectrum

[PRD 70 (2004) 054017]

The LHCb detector

- \triangleright A single-arm forward region spectrometer covering $2 < \eta < 5$
 - ✓ Collected the largest B_c^+ sample so far
 - ✓ Has a better mass resolution providing larger possibility to distinguish $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ if they don't overlap

- \checkmark Vertex Locator: $\sigma_{{\rm PV},x/y}{\sim}10~\mu{\rm m},~\sigma_{{\rm PV},z}{\sim}60~\mu{\rm m}$
- \checkmark Tracking (TT, T1-T3): $\Delta p/p = 0.5 0.6\%$ for 5
- ✓ RICHs: $\varepsilon(K \to K) \sim 95\%$ @ misID rate $(\pi \to K) \sim 5\%$
- ✓ Muon system (M1-M5): $\varepsilon(\mu \to \mu) \sim 97\%$ @ misID rate $(\pi \to \mu) \sim 1 3\%$
- ✓ ECAL: $\sigma_E/E \sim 10\%/\sqrt{E} \otimes 1\%$ (E in GeV)
- ✓ HCAL: σ_E/E ~70% / \sqrt{E} ⊗ 10% (E in GeV)

[JINST 3 (2008) S08005]

Analysis strategy

- ❖ Data sample: pp collision data at $\sqrt{s} = 8$ TeV corresponding to 2 fb⁻¹
- ❖MC sample: BcVegPy generator used to simulate the production of B_c^+ mesons [CPC 174 (2006) 241]
- $\gt B_c^{(*)}(2S)^+$ reconstructed using $B_c^+\pi^+\pi^-$ with $B_c^+\to J/\psi\pi^+, J/\psi\to\mu^+\mu^ \circ B_c(2^1S_0)^+\to B_c^+\pi^+\pi^ \circ B_c(2^3S_1)^+\to B_c^{*+}(\to B_c^+\gamma)\pi^+\pi^-$ with γ not reconstructed
- $\Rightarrow B_c(2^1S_0)^+ \text{ and } B_c(2^3S_1)^+ \text{ mass peak difference is}$ $\Delta M = \Delta M(1S) \Delta M(2S)$ $= (M(1^3S_1) M(1^1S_0)) (M(2^3S_1) M(2^1S_0))$
- \triangleright Mass region of interest for $B_c^{(*)}(2S)^+$ search
 - ✓Theories predict $M(B_c(2^1S_0)^+)$ ∈ (6830,6890) MeV/ c^2 & ΔM ∈ [0,35]MeV/ c^2 $M(B_c(2^3S_1)^+)_{rec}$ ∈ (6795,6890) MeV/ c^2
 - ✓ ATLAS measurement $M(B_c(2S)^+) = 6842 \pm 4(\text{stat}) \pm 5(\text{syst}) \text{MeV}/c^2$

Selection of B_c^+

>Trigger requirement

- \checkmark Hardware: at least one muon with high $p_{
 m T}$ or a hadron with high $E_{
 m T}$
- \checkmark Software: two muon tracks or three charged tracks with high $p_{\rm T}$ forming a secondary vertex with significant displacement from the interaction point

➤ Offline cuts

- $\checkmark \mu^{\pm}$: $p_{\rm T} > 0.55~{
 m GeV}/c$, good track-fit quality, identified as muons
- $\checkmark J/\psi \rightarrow \mu^+\mu^-$: $M(\mu^+\mu^-) \in [3040,3140] \text{ MeV}/c^2$, muons originate from a common vertex
- $\sqrt{\pi^+}$: $p_T > 1.0 \text{ GeV}/c$, good track-fit quality, isolated from primary vertex
- \checkmark B_c^+ → $J/\psi \pi^+$: J/ψ and π^+ form a common vertex, come from PV, $\tau > 0.2~\mathrm{ps}$

$B_c^+ \rightarrow J/\psi \pi^+$

➤ BDTG classifier applied

- ✓ Input variables: $\chi_{\rm IP}^2$ of all particles; $p_{\rm T}$ of μ^\pm , J/ψ and π^+ ; decay length, decay time and $\chi_{\rm vtx}^2$ of B_c^+
- ✓ BDTG threshold chosen to maximize the signal significance $S/\sqrt{S+B}$

B_c^+ signal yield

- ightharpoonup Determined with unbinned maximum likelihood fit to $J/\psi\pi^+$ invariant mass spectrum
 - ✓ Signal: parameterized DSCB functions (Gaussian function with power tails)
 - ✓ Combinatorial background: exponential function
 - ✓ Contamination from $B_c^+ \to J/\psi K^+$: sum of 2 CB functions; fixed to MC

 \triangleright Signal yield 3325 \pm 73, compared to 327 \pm 34 in the ATLAS measurement

Selection of $B_c^{(*)}(2S)^+$

> Cuts

- $\checkmark B_c^+$: selected B_c^+ with $M(J/\psi \pi^+) \in [6200,6340] \text{ MeV}/c^2$
- $\checkmark\pi^{\pm}$: $p_{\rm T}>0.25~{\rm GeV}/c$, $p>2~{\rm GeV}/c$, good track-fit quality, identified as pions
- $\checkmark B_c^{(*)}(2S)^+$: good vertex-fit quality

> MLP classifier

- ✓Input variables: $p_{\rm T}(B_c^+)$; $B_c^{(*)}(2S)^+ \chi_{\rm vtx}^2$; decay angle of B_c^+ and π^\pm ; angle in XY-plane between daughters of $B_c^{(*)}(2S)^+$; minimum cosine value of the angles between daughters.
- ✓ Inputs have similar distributions for $B_c(2^1S_0)^+ \& B_c(2^3S_1)^+$
- ✓ Signal sample: $B_c(2^1S_0)^+ \& B_c(2^3S_1)^+$ MC

Background sample: sidebands in $M(B_c^+\pi^+\pi^-) \in [6555,6785] \cup [6900,7500] \text{ MeV}/c^2$

MLP response

- The MLP output of signal sample is flattened, making the background candidates cluster near zero
- ➤ Data split into 4 Categories: (0.02,0.2), [0.2,0.4), [0.4,0.6) and [0.6,1.0], with 98% of the signal retained

- ✓ Clear discrimination between signal and background
- ✓ Good agreement between data sidebands and same-sign sample, which
 is later used to control the background shape

$B_c^+\pi^+\pi^-$ mass spectrum

 \triangleright No evidence of $B_c^{(*)}(2S)^+$ signal. Upper limits to be given.

(a) MLP category: (0.02,0.2)

(c) MLP category: [0.4,0.6)

(b) MLP category: [0.2,0.4)

(d) MLP category: [0.6,1.0]

[arXiv:1712.04094]

Upper limits

➤ Set upper limits to for two cases

$$\mathcal{R} = \frac{\sigma\left(B_c^{(*)+}(2S)\right) \cdot \mathcal{B}\left(B_c^{(*)+}(2S) \to B_c^+ \pi^+ \pi^-\right)}{\sigma(B_c^+)}$$

$$= \frac{N\left(B_c^{(*)+}(2S)\right)}{N(B_c^+)} \times \frac{\varepsilon(B_c^+ \to J/\psi \pi^+)}{\varepsilon\left(B_c^{(*)+}(2S) \to B_c^+ \pi^+ \pi^-\right) \cdot \varepsilon'(B_c^+ \to J/\psi \pi^+)}$$

- $\checkmark \Delta M = 0$; fully overlapping; upper limits for $\mathcal{R}(B_c(2^1S_0)^+) + \mathcal{R}(B_c(2^3S_1)^+)$
- $\checkmark \Delta M \neq 0$; fully separated; $\Delta M = 15 / 25 / 35 \text{ MeV}/c^2$
- \triangleright Scan region: $M(B_c(2^1S_0)^+) \in (6830,6890) \text{ MeV}/c^2$
- >Scan window: $\left[M 1.4 \times \sigma \left(B_c^{(*)}(2S)^+ \right), M + 1.4 \times \sigma \left(B_c^{(*)}(2S)^+ \right) \right]$
 - ✓ Gives the best sensitivity
 - $\checkmark \sigma$ determined from MC and scaled according to $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$
 - $\sqrt{\sigma}(B_c(2^1S_0)^+)\sim 2 \text{ MeV}; B_c(2^3S_1)^+\sim 3 \text{ MeV}$
- \succ CLs method: upper limits determined from the CL_s vs. $\mathcal R$ curve

✓ Statistical test
$$Q = \frac{\mathcal{L}(N_{\text{obs}}; N_S + N_B)}{\mathcal{L}(N_{\text{obs}}; N_B)}$$
; $\mathcal{L}(n; x) = \frac{e^{-x}}{n!} x^n$; $Q_{\text{tot}} = \prod_i^{\text{Nbins}} Q_i$

$$\checkmark CL_{s+b} = P_{s+b}(lnQ \le lnQ_{obs}); CL_b = P_b(lnQ \le lnQ_{obs})$$

$$\checkmark CL_s = CL_{s+b}/CL_b$$

Background determination

- ➤ Determined by extrapolating from sidebands
 - ✓ Model: sum of two $(x \text{offset})^{\text{power}} \times \exp(-\text{coeff} \cdot (x \text{offset}))$ parameters fixed to fit of same-sign distribution

Efficiencies

[arXiv:1712.04094]

- ➤ Estimated using simulated samples
 - √ Pion PID efficiency calibrated according to data sample
 - √ Tracking efficiency of two pions corrected according to data sample
- The efficiency of reconstructing B_c^+ cancel well between the $B_c^{(*)}(2S)^+$ and B_c^+ channels

MLP category	(0.02, 0.2)	[0.2, 0.4) Efficience	[0.4, 0.6) ies in %	[0.6, 1.0]
$B_c(2S)^+ B_c^*(2S)^+$			0.130 ± 0.006 0.144 ± 0.004	

Before MLP:
$$\varepsilon(B_c(2^1S_0)^+) = 0.0091 \pm 0.0002, \varepsilon(B_c(2^3S_1)^+) = 0.0086 \pm 0.0001$$

 $\varepsilon(B_c^+) = 0.0931 \pm 0.0005$

 \triangleright Variation of efficiency with respect to $B_c^{(*)}(2S)^+$ mass studied using simulated samples with different mass settings

Systematic uncertainties

MLP category	(0.02, 0.2)	[0.2, 0.4)	[0.4, 0.6)	[0.6, 1.0]
$\overline{N_{B_c^+}}$		1.0%	70	
$arepsilon_{B_c^+}$	0.5%			
N_B°	4.2%	9.0%	15.0%	6.9%
$B_c(2S)^+ \to B_c^+ \pi^+ \pi^-$				
$\varepsilon_{B_c(2S)^+}$	4.6%	4.7%	4.9%	3.6%
Efficiency variation vs. $M(B_c(2S)^+)$	0.6%	1.3%	1.8%	2.7%
$B_c^*(2S)^+ \to B_c^{*+} \pi^+ \pi^-$				
$\varepsilon_{B_c^*(2S)^+}$	3.5%	3.3%	3.3%	2.7%
Efficiency variation vs. $M(B_c^*(2S)^+)$	1.0%	1.8%	2.5%	4.3%

[arXiv:1712.04094]

Largest contribution is systematic uncertainty of N_B

- 1) Disagreement between data and same-sign: generating toy MC samples with sidebands of real data and signal region taken from same-sign sample
- 2) Imperfect modelling: using alternative empirical model

Results

ightharpoonup Theories predict $\mathcal{R}(B_c(2^3S_1)^+) > 2 \times \mathcal{R}(B_c(2^1S_0)^+) \Rightarrow$ overlapped or $B_c(2^3S_1)^+$

(c) $\Delta M = 25 \,\text{MeV}/c^2$

(b) $\Delta M = 15 \,\text{MeV}/c^2$

(d) $\Delta M = 35 \,\text{MeV}/c^2$

[arXiv:1712.04094]

Comparison to ATLAS

- \blacktriangleright LHCb: forward y and smaller $p_{\mathrm{T}} \Leftrightarrow$ ATLAS: central y and larger p_{T}
- $\succ \mathcal{R}$ has no significant dependence on p_{T} and y of B_c^+ according to theories, so the upper limits can be compared with the ATLAS measurement
- ➤ Comparison with ATLAS

	$\sqrt{s} = 7 \text{TeV}$	$\sqrt{s} = 8 \text{TeV}$	
ATLAS	$(0.22 \pm 0.08 (\mathrm{stat}))/\varepsilon_7$	$(0.15 \pm 0.06 (\mathrm{stat}))/\varepsilon_8$	[PRL 113 (2014) 12004]
LHCb	_	< [0.04, 0.09]	[arXiv:1712.04094]

- $\checkmark \varepsilon_{7,8}$ is the efficiency to reconstruct $B_c^{(*)}(2S)^+$ w.r.t. the B_c^+ signals; ≤ 1 but much larger than that of LHCb due to the larger $p_{\rm T}$
- ✓ LHCb upper limits at 95% CL in the vicinity of the ATLAS peak at \sim 6842 MeV/ c^2
- > The LHCb and ATLAS measurements are compatible only in case of very large values of $\varepsilon_{7.8}$

Summary

- > Search for $B_c^{(*)}(2S)^+ \to B_c^+ \pi^+ \pi^-$ using 2 fb⁻¹ data at $\sqrt{s} = 8$ TeV
 - ✓ No evidence of signal
 - ✓ Upper limits set for different mass hypotheses
 - ✓ No argument of clear discrepancy with the ATLAS observation
- \triangleright A good chance to confirm the $B_c^{(*)}(2S)^+$ observation with the full dataset
 - ✓ RunI (2011-2012): $\mathcal{L}_{\rm int} = 1~{\rm fb}^{-1}$ @ 7 TeV & 2 fb⁻¹ @ 8 TeV; $\sigma(b\bar{b}) \approx 250~{\rm \mu b}^{-1}$ @ 7 TeV
 - ✓ RunII (2015-2018): $\mathcal{L}_{\text{int}} = 5 \text{ fb}^{-1} @ 13 \text{ TeV}$; $\sigma(b\bar{b}) \approx 500 \text{ }\mu\text{b}^{-1} @ 13 \text{ TeV}$

Thank you!