Search for excited B_{c}^{+}states at LHCb

Liupan An
On behalf of the LHCb collaboration
Tsinghua University

CLHCP 2017, Dec 22 ${ }^{\text {nd }} 2017$ @ Nanjing, China

Outline

$>$ Introduction
$>$ The LHCb detector
$>$ Analysis strategy
$>$ Selection
>Upper limits
$>$ Summary

Introduction

$>B_{c}^{+}$: the only meson family containing two different heavy flavor quarks
\checkmark A rich mass spectrum predicted by various QCD potential models and Lattice QCD
\checkmark States below $B D$ threshold can only undergo radiative or hadronic transitions to the ground state B_{c}^{+}which decays weakly \checkmark Only B_{c}^{+}and $B_{c}(2 S)^{+}$observed so far
$>$ ATLAS observed $B_{c}(2 S)^{+}$using $B_{c}^{+} \pi^{+} \pi^{-}$
\checkmark No discrimination between

- $B_{c}\left(2^{1} S_{0}\right)^{+} \rightarrow B_{c}^{+} \pi^{+} \pi^{-}$
$\circ B_{c}\left(2^{3} S_{1}\right)^{+} \rightarrow B_{c}^{*+}\left(\rightarrow B_{c}^{+} \gamma\right) \pi^{+} \pi^{-}$
\checkmark No confirmation from other experiments yet
>Important to perform the search at LHCb!

22/12/17

Liupan An

The LHCb detector

$>$ A single-arm forward region spectrometer covering $2<\eta<5$
\checkmark Collected the largest B_{c}^{+}sample so far
\checkmark Has a better mass resolution providing larger possibility to distinguish $B_{c}\left(2^{1} S_{0}\right)^{+}$ and $B_{c}\left(2^{3} S_{1}\right)^{+}$if they don't overlap

[JINST 3 (2008) S08005]
\checkmark Vertex Locator: $\sigma_{\mathrm{PV}, x / y} \sim 10 \mu \mathrm{~m}, \sigma_{\mathrm{PV}, z} \sim 60 \mu \mathrm{~m}$
\checkmark Tracking (TT, T1-T3): $\Delta p / p=0.5-0.6 \%$ for $5<p<100 \mathrm{GeV} / c$
\checkmark RICHs: $\varepsilon(K \rightarrow K) \sim 95 \% @$ misID rate $(\pi \rightarrow K) \sim 5 \%$
\checkmark Muon system (M1-M5): $\varepsilon(\mu \rightarrow \mu) \sim 97 \%$ @ misID rate $(\pi \rightarrow \mu) \sim 1-3 \%$
\checkmark ECAL: $\sigma_{E} / E \sim 10 \% / \sqrt{E} \otimes 1 \%(E$ in GeV$)$
\checkmark HCAL: $\sigma_{E} / E \sim 70 \% / \sqrt{E} \otimes 10 \%(E$ in GeV$)$

Analysis strategy

*Data sample: $p p$ collision data at $\sqrt{s}=8 \mathrm{TeV}$ corresponding to $2 \mathrm{fb}^{-1}$
$* \mathrm{MC}$ sample: BcVegPy generator used to simulate the production of B_{c}^{+}mesons [CPC 174 (2006) 241]
$>B_{c}^{(*)}(2 S)^{+}$reconstructed using $B_{c}^{+} \pi^{+} \pi^{-}$with $B_{c}^{+} \rightarrow J / \psi \pi^{+}, J / \psi \rightarrow \mu^{+} \mu^{-}$

- $B_{c}\left(2^{1} S_{0}\right)^{+} \rightarrow B_{c}^{+} \pi^{+} \pi^{-}$
- $B_{c}\left(2^{3} S_{1}\right)^{+} \rightarrow B_{c}^{*+}\left(\rightarrow B_{c}^{+} \gamma\right) \pi^{+} \pi^{-}$with γ not reconstructed
$\Rightarrow B_{c}\left(2^{1} S_{0}\right)^{+}$and $B_{c}\left(2^{3} S_{1}\right)^{+}$mass peak difference is

$$
\begin{aligned}
\Delta M & =\Delta M(1 S)-\Delta M(2 S) \\
& =\left(M\left(1^{3} S_{1}\right)-M\left(1^{1} S_{0}\right)\right)-\left(M\left(2^{3} S_{1}\right)-M\left(2^{1} S_{0}\right)\right)
\end{aligned}
$$

$>$ Mass region of interest for $B_{c}^{(*)}(2 S)^{+}$search
\checkmark Theories predict

$$
M\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right) \in(6830,6890) \mathrm{MeV} / c^{2} \& \Delta M \in[0,35] \mathrm{MeV} / c^{2}
$$

$$
M\left(B_{c}\left(2^{3} S_{1}\right)^{+}\right)_{\mathrm{rec}} \in(6795,6890) \mathrm{MeV} / c^{2}
$$

\checkmark ATLAS measurement $M\left(B_{c}(2 S)^{+}\right)=6842 \pm 4($ stat $) \pm 5($ syst $) \mathrm{MeV} / c^{2}$

Selection of B_{c}^{+}

$>$ Trigger requirement
\checkmark Hardware: at least one muon with high p_{T} or a hadron with high E_{T}
\checkmark Software: two muon tracks or three charged tracks with high p_{T} forming a secondary vertex with significant displacement from the interaction point
$>$ Offline cuts
$\checkmark \mu^{ \pm}: p_{\mathrm{T}}>0.55 \mathrm{GeV} / c$, good track-fit quality, identified as muons
$\checkmark J / \psi \rightarrow \mu^{+} \mu^{-}: M\left(\mu^{+} \mu^{-}\right) \in[3040,3140] \mathrm{MeV} / c^{2}$, muons originate from a common vertex
$\checkmark \pi^{+}: p_{\mathrm{T}}>1.0 \mathrm{GeV} / c$, good track-fit quality, isolated from primary vertex
$\checkmark B_{C}^{+} \rightarrow J / \psi \pi^{+}: J / \psi$ and π^{+}form a common vertex, come from $\mathrm{PV}, \tau>0.2 \mathrm{ps}$

$B_{c}^{+} \rightarrow J / \psi \pi^{+}$
$>$ BDTG classifier applied
\checkmark Input variables: χ_{IP}^{2} of all particles;
p_{T} of $\mu^{ \pm}, J / \psi$ and π^{+};
decay length, decay time and χ_{vtx}^{2} of B_{C}^{+}
\checkmark BDTG threshold chosen to maximize the signal significance $S / \sqrt{S+B}$

B_{c}^{+}signal yield

$>$ Determined with unbinned maximum likelihood fit to $J / \psi \pi^{+}$invariant mass spectrum
\checkmark Signal: parameterized DSCB functions (Gaussian function with power tails)
\checkmark Combinatorial background: exponential function
\checkmark Contamination from $B_{c}^{+} \rightarrow J / \psi K^{+}$: sum of 2 CB functions; fixed to MC

$>$ Signal yield 3325 ± 73, compared to 327 ± 34 in the ATLAS measurement

Selection of $B_{c}^{(*)}(2 S)^{+}$

$>$ Cuts
$\checkmark B_{c}^{+}$: selected B_{c}^{+}with $M\left(J / \psi \pi^{+}\right) \in[6200,6340] \mathrm{MeV} / c^{2}$
$\checkmark \pi^{ \pm}: p_{\mathrm{T}}>0.25 \mathrm{GeV} / c, p>2 \mathrm{GeV} / c$, good track-fit quality, identified as pions
$\checkmark B_{c}^{(*)}(2 S)^{+}$: good vertex-fit quality
>MLP classifier
\checkmark Input variables: $p_{\mathrm{T}}\left(B_{c}^{+}\right) ; B_{c}^{(*)}(2 S)^{+} \chi_{\mathrm{vtx}}^{2}$; decay angle of B_{c}^{+}and $\pi^{ \pm}$;
angle in XY-plane between daughters of $B_{c}^{(*)}(2 S)^{+}$;
minimum cosine value of the angles between daughters.
\checkmark Inputs have similar distributions for $B_{c}\left(2^{1} S_{0}\right)^{+} \& B_{c}\left(2^{3} S_{1}\right)^{+}$
\checkmark Signal sample: $B_{c}\left(2^{1} S_{0}\right)^{+} \& B_{c}\left(2^{3} S_{1}\right)^{+} \mathrm{MC}$
Background sample: sidebands in $M\left(B_{c}^{+} \pi^{+} \pi^{-}\right) \in[6555,6785] \cup[6900,7500] \mathrm{MeV} / c^{2}$

MLP response

$>$ The MLP output of signal sample is flattened, making the background candidates cluster near zero
$>$ Data split into 4 Categories: $(0.02,0.2),[0.2,0.4),[0.4,0.6)$ and $[0.6,1.0]$, with 98% of the signal retained

\checkmark Clear discrimination between signal and background
\checkmark Good agreement between data sidebands and same-sign sample, which is later used to control the background shape

$B_{c}^{+} \pi^{+} \pi^{-}$mass spectrum

$>$ No evidence of $B_{c}^{(*)}(2 S)^{+}$signal. Upper limits to be given.

Upper limits

>Set upper limits to for two cases

$$
\begin{aligned}
& \mathcal{R}=\frac{\sigma\left(B_{c}^{(*)+}(2 S)\right) \cdot \mathcal{B}\left(B_{c}^{(*)+}(2 S) \rightarrow B_{c}^{+} \pi^{+} \pi^{-}\right)}{\sigma\left(B_{c}^{+}\right)} \\
& =\frac{N\left(B_{c}^{(*)+}(2 S)\right)}{N\left(B_{c}^{+}\right)} \times \frac{\varepsilon\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}{\varepsilon\left(B_{c}^{(*)+}(2 S) \rightarrow B_{c}^{+} \pi^{+} \pi^{-}\right) \cdot \varepsilon^{\prime}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}
\end{aligned}
$$

$\checkmark \Delta M=0$; fully overlapping; upper limits for $\mathcal{R}\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right)+\mathcal{R}\left(B_{c}\left(2^{3} S_{1}\right)^{+}\right)$
$\checkmark \Delta M \neq 0$; fully separated; $\Delta M=15 / 25 / 35 \mathrm{MeV} / \mathrm{c}^{2}$
$>$ Scan region: $M\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right) \in(6830,6890) \mathrm{MeV} / c^{2}$
$>$ Scan window: $\left[M-1.4 \times \sigma\left(B_{c}^{(*)}(2 S)^{+}\right), M+1.4 \times \sigma\left(B_{c}^{(*)}(2 S)^{+}\right)\right]$

\checkmark Gives the best sensitivity

$\checkmark \sigma$ determined from MC and scaled according to $B_{c}^{+} \rightarrow J / \psi \pi^{+} \pi^{-} \pi^{+}$ $\checkmark \sigma\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right) \sim 2 \mathrm{MeV} ; B_{c}\left(2^{3} S_{1}\right)^{+} \sim 3 \mathrm{MeV}$
$>$ CLs method: upper limits determined from the $C L_{\mathrm{s}}$ vs. \mathcal{R} curve
\checkmark Statistical test $Q=\frac{\mathcal{L}\left(N_{\mathrm{obs}} ; N_{S}+N_{B}\right)}{\mathcal{L}\left(N_{\mathrm{obs}} ; N_{B}\right)} ; \mathcal{L}(n ; x)=\frac{e^{-x}}{n!} x^{n} ; \mathcal{Q}_{\mathrm{tot}}=\prod_{i}^{\mathrm{Nbins}} Q_{i}$
$\checkmark C L_{\mathrm{s}+\mathrm{b}}=P_{\mathrm{s}+\mathrm{b}}\left(\ln Q \leq \ln Q_{\mathrm{obs}}\right) ; C L_{\mathrm{b}}=P_{\mathrm{b}}\left(\ln Q \leq \ln Q_{\mathrm{obs}}\right)$
$\checkmark C L_{\mathrm{s}}=C L_{\mathrm{s}+\mathrm{b}} / C L_{\mathrm{b}}$

Background determination

$>$ Determined by extrapolating from sidebands
\checkmark Model: sum of two $(x-\text { offset })^{\text {power }} \times \exp (-$ coeff $\cdot(x-$ offset $))$ parameters fixed to fit of same-sign distribution

(a) MLP category: $(0.02,0.2)$

(c) MLP category: $[0.4,0.6)$

(b) MLP category: $[0.2,0.4)$

(d) MLP category: $[0.6,1.0]$

Efficiencies

- Estimated using simulated samples
\checkmark Pion PID efficiency calibrated according to data sample
\checkmark Tracking efficiency of two pions corrected according to data sample
$>$ The efficiency of reconstructing B_{c}^{+}cancel well between the $B_{c}^{(*)}(2 S)^{+}$and B_{c}^{+}channels
[arXiv:1712.04094]

MLP category	$(0.02,0.2)$	$[0.2,0.4)$					$[0.4,0.6)$	$[0.6,1.0]$
	Efficiencies in $\%$							
$B_{c}(2 S)^{+}$	0.148 ± 0.006	0.140 ± 0.006	0.130 ± 0.006	0.256 ± 0.008				
$B_{c}^{*}(2 S)^{+}$	0.118 ± 0.003	0.140 ± 0.004	0.144 ± 0.004	0.288 ± 0.005				

Before MLP: $\varepsilon\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right)=0.0091 \pm 0.0002, \varepsilon\left(B_{c}\left(2^{3} S_{1}\right)^{+}\right)=0.0086 \pm 0.0001$ $\varepsilon\left(B_{c}^{+}\right)=0.0931 \pm 0.0005$
$>$ Variation of efficiency with respect to $B_{c}^{(*)}(2 S)^{+}$mass studied using simulated samples with different mass settings

Systematic uncertainties

MLP category	$(0.02,0.2)$	$[0.2,0.4)$	$[0.4,0.6)$	$[0.6,1.0]$
$N_{B_{c}^{+}}$		1.0%		
$\varepsilon_{B_{c}^{+}}$	4.2%	9.0%	15.0%	6.9%
N_{B}				
$B_{c}(2 S)^{+} \rightarrow B_{c}^{+} \pi^{+} \pi^{-}$	4.6%	4.7%	4.9%	3.6%
$\varepsilon_{B_{c}(2 S)^{+}}$	0.6%	1.3%	1.8%	2.7%
Efficiency variation vs. $M\left(B_{c}(2 S)^{+}\right)$				
$B_{c}^{*}(2 S)^{+} \rightarrow B_{c}^{*+} \pi^{+} \pi^{-}$	3.5%	3.3%	3.3%	2.7%
$\varepsilon_{B_{c}^{*}(2 S)^{+}}$	Efficiency variation vs. $M\left(B_{c}^{*}(2 S)^{+}\right)$	1.0%	1.8%	2.5%

[arXiv:1712.04094]

Largest contribution is systematic uncertainty of N_{B}

1) Disagreement between data and same-sign: generating toy $M C$ samples with sidebands of real data and signal region taken from same-sign sample
2) Imperfect modelling: using alternative empirical model

Results

Theories predict $\mathcal{R}\left(B_{c}\left(2^{3} S_{1}\right)^{+}\right)>2 \times \mathcal{R}\left(B_{c}\left(2^{1} S_{0}\right)^{+}\right) \Rightarrow$ overlapped or $B_{c}\left(2^{3} S_{1}\right)^{+}$
Reconstructed $M\left(B_{c}\left(2^{3} \mathrm{~S}_{1}\right)^{+}\right)\left[\mathrm{MeV} / c^{2}\right]$
Reconstructed $M\left(B_{c}\left(2^{3} \mathrm{~S}_{1}\right)^{+}\right)\left[\mathrm{MeV} / c^{2}\right]$

(a) $\Delta M=0 \mathrm{MeV} / c^{2}$

Reconstructed $M\left(B_{c}\left(2^{3} \mathrm{~S}_{1}\right)^{+}\right)\left[\mathrm{MeV} / c^{2}\right]$

(c) $\Delta M=25 \mathrm{MeV} / c^{2}$

(b) $\Delta M=15 \mathrm{MeV} / c^{2}$

Reconstructed $M\left(B_{c}\left(2^{3} \mathrm{~S}_{1}\right)^{+}\right)\left[\mathrm{MeV} / c^{2}\right]$

(d) $\Delta M=35 \mathrm{MeV} / c^{2}$
[arXiv:1712.04094]

Comparison to ATLAS

$>$ LHCb: forward y and smaller $p_{\mathrm{T}} \Leftrightarrow$ ATLAS: central y and larger p_{T}
$>\mathcal{R}$ has no significant dependence on p_{T} and y of B_{c}^{+}according to theories, so the upper limits can be compared with the ATLAS measurement
>Comparison with ATLAS

	$\sqrt{s}=7 \mathrm{TeV}$	$\sqrt{s}=8 \mathrm{TeV}$
ATLAS	$(0.22 \pm 0.08($ stat $)) / \varepsilon_{7}$	$(0.15 \pm 0.06($ stat $)) / \varepsilon_{8}$
LPRL 113 (2014) 12004]		

$\checkmark \varepsilon_{7,8}$ is the efficiency to reconstruct $B_{c}^{(*)}(2 S)^{+}$w.r.t. the B_{c}^{+}signals; ≤ 1 but much larger than that of LHCb due to the larger p_{T}
\checkmark LHCb upper limits at 95% CL in the vicinity of the ATLAS peak at $\sim 6842 \mathrm{MeV} / \mathrm{c}^{2}$
$>$ The LHCb and ATLAS measurements are compatible only in case of very large values of $\varepsilon_{7,8}$

Summary

$>$ Search for $B_{c}^{(*)}(2 S)^{+} \rightarrow B_{c}^{+} \pi^{+} \pi^{-}$using $2 \mathrm{fb}^{-1}$ data at $\sqrt{s}=8 \mathrm{TeV}$
\checkmark No evidence of signal
\checkmark Upper limits set for different mass hypotheses
\checkmark No argument of clear discrepancy with the ATLAS observation
$>$ A good chance to confirm the $B_{c}^{(*)}(2 S)^{+}$observation with the full dataset \checkmark Runl (2011-2012): $\mathcal{L}_{\text {int }}=1 \mathrm{fb}^{-1} @ 7 \mathrm{TeV} \& 2 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$; $\sigma(b \bar{b}) \approx 250 \mu \mathrm{~b}^{-1} @ 7 \mathrm{TeV}$
\checkmark Runll (2015-2018): $\mathcal{L}_{\mathrm{int}}=5 \mathrm{fb}^{-1} @ 13 \mathrm{TeV} ; \sigma(b \bar{b}) \approx 500 \mathrm{\mu b}^{-1} @ 13 \mathrm{TeV}$

Thank you!

