

Observation of Ξ_{cc}^{++} **at LHCb**

Menglin Xu

On behalf of the LHCb collaboration Central China Normal University

CLHCP, 22th Dec 2017

- Introduction and physics motivation
- LHCb observation of doubly charmed baryon Ξ_{cc}^{++}
- Summary

The doubly charm baryons

- Two SU(4) baryon 20-plets with $J^P = \frac{1}{2}^+$ and $J^P = \frac{3}{2}^+$, each contains a SU(3) triplet with two charm quarks: $\Xi_{cc}^+(ccd)$, $\Xi_{cc}^{++}(ccu)$, $\Omega_{cc}^+(ccs)$
- $J^P = \frac{3}{2}^+$ expected to decay to $\frac{1}{2}^+$ states via strong/electromagnetic interaction
- $J^P = \frac{1}{2}^+$ states decay weakly with a *c* quark transformed to lighter quarks

Masses

- Many models have been applied to determine masses of ground state and excitations: (non-) relativistic QCD potential models, bag model or quark model ...
 - ≻ Predicted $M(\Xi_{cc}^{+,++}) \in [3.5,3.7\text{GeV}]$, $M(\Omega_{cc}^{+}) \approx M(\Xi_{cc}) + 0.1 \text{ GeV}$
 - $\succ M(\Xi_{cc}^{++}) \approx M(\Xi_{cc}^{+})$ due to *u*, *d* symmetry

• Lattice QCD computations:

Refs.[1-30]

 $M(\Xi_{cc}) \approx 3.6 \text{ GeV}, \quad M(\Omega_{cc}^+) \approx 3.7 \text{ GeV}$ Refs.[31-46]

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
 - > Signal yields: 15.9 ($\Lambda_c^+ K^- \pi^+$) and 5.62 (pD^+K^-)
 - Short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero
 - > Large production: $R = \frac{\sigma(\Xi_{cc}^+ \to \Lambda_c^+ X)}{\sigma(\Lambda_c^+)} \sim 20\%$
 - ➤ Mass (combined): 3518.7 ± 1.7 MeV

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
 - > Signal yields: 15.9 ($\Lambda_c^+ K^- \pi^+$) and 5.62 (pD^+K^-)
 - > Short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero
 - > Large production: $R = \frac{\sigma(\Xi_{cc}^+ \rightarrow \Lambda_c^+ X)}{\sigma(\Lambda_c^+)} \sim 20\%$
 - ➤ Mass (combined): 3518.7 ± 1.7 MeV

LHCb experiment

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Aiming for precision measurements in *b*, *c* flavor sectors Acceptance: $2 < \eta < 5$

M2 M3 M4 M5 ECAL HCAL SPD/PS 5m RICH2 M1 Magnet 250 mrad T3 Т RICH1 Vertex ocator K^{-} π^+ Ξ_{cc}^{++} 5m 10m 15m 20m

CLHCP (22/12/2017)

Searching for $\Xi_{cc}^{++}(ccu)$

- Expected to have longer lifetime than Ξ_{cc}^+ , higher sensitivity at LHCb
- Decay: $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$, branching fraction up to 10% Refs. [56]
- Data sample: LHCb run II at $\sqrt{s} = 13$ TeV, ~1.7 fb⁻¹
 - Dedicated exclusive trigger ensuring high efficiency, full event reconstruction at trigger level
 - ▶ Run I data (2012) also analyzed for cross-check

Candidate selection

- Ξ_{cc} cross-section much smaller (~ × 10⁻⁵) than inelastic cross-section in *pp* collisions, expecting large hadronic backgrounds Refs.[5, 53-56]
- $\Lambda_c^+ \rightarrow p K^- \pi^+$:
 - $> p, K^-, \pi^+$ tracks: positive particle ID, not produced from primary vertices
 - $> \Lambda_c^+$: good vertex quality, separated from primary vertices
 - $> p, K^-, \pi^+$ tracks and Λ_c^+ have large p_T

Strongly suppressing the backgrounds

The machine learning

- Λ_c^+ combined with PID-selected $K^-\pi^+\pi^+$ tracks to form Ξ_{cc}^{++} candidates
- Multivariate selector further explores
 - Decay fit quality
 - Kinematics of final states
 - $\geq \Xi_{cc}^{++}$ vertex separation from PV

□ More sensitive to long lived particles

Selector optimized using simulated decays for signals and a wrong-sign control sample representing backgrounds: $\Xi_{cc}^{++} \rightarrow K^- \pi^+ \pi^- \Lambda_c^+$

 Ξ_{cc}^{++}

 $\Xi_{cc}^{++} \rightarrow K^- \pi^+ \pi^+ \Lambda_c^+ (\rightarrow p K^- \pi^+)$

 Λ_{c}^{+}

10

- $\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$ mass spectrum
- A significant structure in right sign (RS) combinations
- Not present in wrong sign (WS) combinations
- Not observed for Λ_c^+ background candidates

PRL 119 (2017) 112001

• Signal candidates only present in Λ_c^+ signal region

PRL 119 (2017) 112001

Signal yield

- Studying Λ_c^+ -mass corrected mass: $m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Lambda_c^+ K^- \pi^+) m(\Lambda_c^+) + m_{\text{PDG}}(\Lambda_c^+)$
 - Signal yield: 313 ± 33
 - \blacktriangleright Resolution: 6.6 \pm 0.8 MeV, consistent with simulated value

Mass measurement

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^+) = 1134.94 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \text{ MeV}$

Value consistent with many theoretical calculations

RunI data

• Signal peak presents in run I data sample with significance > 7σ

 $N(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+) = 113 \pm 21$ Resolution: 6.6 ± 1.4 MeV δM (run I, run II) = 0.8 ± 1.4 MeV

Consistent between two samples

 $\Xi_{cc}^{++} \rightarrow K^- \pi^+ \pi^+ \Lambda_c^+ (\rightarrow p K^- \pi^+)$

It is a weak decay

• Peaking structure remains significant (> 12σ) after requiring minimum decay time, $t > 5\sigma_t$. It is indeed a weak decay.

PRL 119 (2017) 112001

Comparison with SELEX

• Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} - m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$

➢ Inconsistent with being isospin partners

- Refs. [46-48]
- Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in LHCb result

The "news"

• LHCb observed the $\Xi_{cc}^{++}(ccu)$ state in the $\Lambda_c^+ K^- \pi^+ \pi^+$ decay

- Mass 3621.40 \pm 0.78 (tot) MeV inconsistent with Ξ_{cc}^+ observed by SELEX being its isospin partner
- > Opens new window for heavy flavour studies
- Stay tuned for upcoming results:

Summary

- Searching for Ξ_{cc}^{++} with more channels: $\Xi_c^+\pi^+$, $\Lambda_c^+\pi^+$, $pD^+K^-\pi^+$...
- > Measurement of the Ξ_{cc}^{++} lifetime
- Measurement of the production cross-section

PRL 119 (2017) 112001

Backup slides

CLHCP (22/12/2017)

Ξ_{cc} spectroscopy

• $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

- ≻ Number of inclusive Λ_c^+ signals: ≈ 1650
- > 15.9 signals over 6.1 \pm 0.5 background candidates with significance of 6.3σ
- ≻ Mass: $m(\Xi_{cc}^+) = 3519 \pm 2 \text{ MeV}$
- ≻ Lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but non zero lifetime
- ► Production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$, much large than most model predictions of ~ 0.1%
- $\Xi_{cc}^+ \rightarrow p D^+ \pi^-$
 - ▶ 5.62 signals over 1.38 ± 0.18 background candidates with 4.8σ
 - ≻ Mass: $m(\Xi_{cc}^+) = 3518 \pm 3 \text{ MeV}$
 - Confirms the observed small lifetime
 - A few percent of D⁺ produced from Ξ⁺_{cc} → pD⁺π[−] decay

Combined mass: 3518.7 \pm 1.7 MeV

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Claims by SELEX (conference reports)
 - Evidence of lower mass $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$
 - Evidence of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ decay

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Claims by SELEX (conference reports)
 - \triangleright Evidence of lower mass $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$
 - Evidence of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ decay

https://www-selex.fnal.gov/

 \succ Evidence of $\Xi_{cc}^{(*)++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$: three of them

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Claims by SELEX: consistent spectroscopy

Studies of Ξ_{cc} by FOCUS

- FOCUS (Fermilab E831) studies charm hadrons produced in photon-nuclear fixed target collisions
- FOCUS didn't confirm Ξ_{cc}^+ observed by SELEX in $\Lambda_c^+ K^- \pi^+$ decay

Studies of Ξ_{cc} by BaBar and Belle

- e^+e^- colliders working at $\Upsilon(4S)$ mass $\sqrt{s} = 10.58$ GeV
- Large Λ_c^+ yields: ≈ 0.6 M at BaBar, ≈ 0.8 M at Belle
- SELEX-like Ξ_{cc}^+ signal not confirmed in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays

 $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} < 2.7 \times 10^{-4} \text{ (BaBar)} \quad 1.5 \times 10^{-4} \text{ (Belle)} @ 95\% \text{ CL}$

Studies of Ξ_{cc}^+ by LHCb JHEP 12 (2013) 090

- *циср*
- LHCb searched for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decay with 0.65 fb⁻¹ of 7 TeV data $\gg N(\Lambda_c^+) \approx 0.8$ M, requiring high- p_T
 - ▷ No significant peaking structure observed with $m \in [3.3, 3.8]$ GeV
 - \triangleright Experiment sensitivity strongly depends on Ξ_{cc}^+ lifetime

$$R = \frac{\sigma(\Xi_{cc}^{+}) \times BF(\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+})}{\sigma(\Lambda_{c}^{+})} < 0.013 \text{ for } \tau = 100 \text{ fs},$$

$$< 3.3 \times 10^{-4} \text{ for } \tau = 400 \text{ fs} \quad @95\%$$

Increased by ~40 from 100 fs to 400 fs

LHCb experiment

- *LHCb* ГНСр
- Since \(\mathcal{E}_{cc}\) states are not stable, not available around us, we need to produce them before studying their properties.
- LHCb produces them in proton-proton collisions
 - > Small cross-section: $\sigma(\Xi_{cc}) \sim 1\mu b$ or 1 in 10⁵ pp collisions, huge backgrounds

• Many different ways of transformations with weak decay, LHCb uses $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ to search for Ξ_{cc}^{++} ($\Lambda_c^+: cud$)

Fitting the mass peak

- Studying Λ_c^+ -mass corrected mass: $m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Lambda_c^+ K^- \pi^+) m(\Lambda_c^+) + m_{\text{PDG}}(\Lambda_c^+)$
 - Signal yield: 313 ± 33
 - \blacktriangleright Resolution: 6.6 \pm 0.8 MeV, consistent with simulated value
 - \triangleright Local significance > 12 σ

arXiv: 1707.01621

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^+) = 1134.94 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \text{ MeV}$

Systematic uncertainties

Source	Value $[MeV/c^2]$
Momentum-scale calibration	0.22
Selection bias correction	0.14
Unknown Ξ_{cc}^{++} lifetime	0.06
Mass fit model	0.07
Sum of above in quadrature	0.27
Λ_c^+ mass uncertainty	0.14

 $\Xi_{cc}^{++} \to K^- \pi^+ \pi^+ \Lambda_c^+ (\to p K^- \pi^+)$

1. Multiple candidates: not creating fake narrow structure

- 1. Multiple candidates: not creating fake narrow structure
- 2. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : not peaking

- 1. Multiple candidates: not creating fake narrow structure
- 2. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : not peaking
- 3. MVA efficiency as a function of mass: very smooth

- 1. Multiple candidates: not creating fake narrow structure
- 2. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : not peaking
- 3. MVA efficiency as a function of mass: very smooth
- 4. Varying threshold value of MVA selector: structure stays significant

- 1. Multiple candidates: not creating fake narrow structure
- 2. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : not peaking
- 3. MVA efficiency as a function of mass: very smooth
- 4. Varying threshold value of MVA selector: structure stays significant
- 5. Varying particle ID selections: no peaking structure emerging in WS combinations, structure stays in RS sample

CLHCP (22/12/2017)

- More tests
- 1. Multiple candidates: not creating fake narrow structure
- 2. Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : not peaking
- 3. MVA efficiency as a function of mass: very smooth
- 4. Varying threshold value of MVA selector: structure stays significant
- 5. Varying particle ID selections: no peaking structure emerging in WS combinations, structure stays in RS sample arXiv: 1707.01621
- 6. Using a cut based selection instead of using MVA, requiring good vertex fit quality, Ξ_{cc}^{++} vertex displaced and tracks are not produced from PV: peak significance > 12σ

 $\Xi_{cc}^{++} \rightarrow K^- \pi^+ \pi^+ \Lambda_c^+ (\rightarrow p K^- \pi^+)$

Signal properties

• Intermediate resonances: $\overline{K}^{*}(892)^{0}, \Sigma_{c}(2455)^{++}, \Sigma_{c}(2520)^{++}$

arXiv: 1707.01621

Prospects

- Searching for Ξ_{cc}^{++} with more channels: $\Xi_c^+\pi^+$, $\Lambda_c^+\pi^+$, $pD^+K^-\pi^+$...
- Measurement of the Ξ_{cc}^{++} lifetime
- Measurement of the production cross-section
- Confirming its spin-parity: 1/2+
- Searching for its isospin partner Ξ_{cc}^+ in a larger sample than the previous measurement
- Searching for Ω_{cc}^+
- Doubly heavy baryons with bottom quark: Ξ_{bc} , Ω_{bc} , Ξ_{bb} ...
- The excited states?
- And new systems for CP violations

A long list of programs

- S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Spectroscopy of doubly heavy baryons, Phys. Atom. Nucl. 63 (2000) 274, arXiv:hep-ph/9811212, [Yad. Fiz. 63, 334 (2000)].
- [2] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Spectroscopy of doubly charmed baryons: \(\alpha_{cc}^+\) and \(\alpha_{cc}^{++}\), Mod. Phys. Lett. A14 (1999) 135, arXiv:hep-ph/9807375.
- [3] C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe, *Doubly charmed baryon masses and quark wave functions in baryons*, Phys. Rev. **D61** (2000) 057502.
- [4] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Spectroscopy of doubly heavy baryons, Phys. Rev. D62 (2000) 054021.
- K. Anikeev et al., B physics at the Tevatron: Run II and beyond, in Workshop on B physics at the Tevatron: Run II and beyond, Batavia, Illinois, September 23-25, 1999, 2001. arXiv:hep-ph/0201071.
- [6] V. V. Kiselev and A. K. Likhoded, Baryons with two heavy quarks, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169.
- [7] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, Mass spectra of doubly heavy baryons in the relativistic quark model, Phys. Rev. D66 (2002) 014008, arXiv:hep-ph/0201217.
- [8] D.-H. He et al., Evaluation of the spectra of baryons containing two heavy quarks in a bag model, Phys. Rev. D70 (2004) 094004, arXiv:hep-ph/0403301.
- W. Roberts and M. Pervin, *Heavy baryons in a quark model*, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

- [10] J.-R. Zhang and M.-Q. Huang, Doubly heavy baryons in QCD sum rules, Phys. Rev. D78 (2008) 094007, arXiv:0810.5396.
- [11] Z.-G. Wang, Analysis of the ¹/₂ doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A45 (2010) 267, arXiv:1001.4693.
- [12] M. Karliner and J. L. Rosner, Baryons with two heavy quarks: masses, production, decays, and detection, Phys. Rev. D90 (2014) 094007, arXiv:1408.5877.
- K.-W. Wei, B. Chen, and X.-H. Guo, Masses of doubly and triply charmed baryons, Phys. Rev. D92 (2015) 076008, arXiv:1503.05184.
- [14] Z.-F. Sun and M. J. Vicente Vacas, Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme, Phys. Rev. D93 (2016) 094002, arXiv:1602.04714.
- B. O. Kerbikov, M. I. Polikarpov, and L. V. Shevchenko, Multi quark masses and wave functions through modified green's function monte carlo method, Nucl. Phys. B331 (1990) 19.
- [16] T. M. Aliev, K. Azizi, and M. Savci, Doubly Heavy Spin-1/2 Baryon Spectrum in QCD, Nucl. Phys. A895 (2012) 59, arXiv:1205.2873.
- [17] S. Fleck and J. M. Richard, Baryons with double charm, Prog. Theor. Phys. 82 (1989) 760.
- [18] V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, Mass spectra of doubly heavy Omega QQ' baryons, Phys. Rev. D66 (2002) 034030, arXiv:hep-ph/0206140.

- [19] C. Albertus, E. Hernandez, J. Nieves, and J. M. Verde-Velasco, Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model, Eur. Phys. J. A32 (2007) 183, arXiv:hep-ph/0610030, [Erratum: Eur. Phys. J.A36,119(2008)].
- [20] S. Migura, D. Merten, B. Metsch, and H.-R. Petry, Charmed baryons in a relativistic quark model, Eur. Phys. J. A28 (2006) 41, arXiv:hep-ph/0602153.
- [21] B. Patel, A. K. Rai, and P. C. Vinodkumar, Heavy Flavour Baryons in Hyper Central Model, Pramana 70 (2008) 797, arXiv:0802.4408.
- [22] F. Giannuzzi, Doubly heavy baryons in a Salpeter model with AdS/QCD inspired potential, Phys. Rev. D79 (2009) 094002, arXiv:0902.4624.
- [23] A. Bernotas and V. Simonis, *Heavy hadron spectroscopy and the bag model*, Lith. J. Phys. 49 (2009) 19, arXiv:0808.1220.
- [24] T. D. Cohen and P. M. Hohler, Doubly heavy hadrons and the domain of validity oftdoubly heavy diquark-anti-quark symmetry, Phys. Rev. D74 (2006) 094003, arXiv:hep-ph/0606084.
- [25] C. Albertus, E. Hernandez, J. Nieves, and J. M. Verde-Velasco, Doubly heavy quark baryon spectroscopy and semileptonic decay, Eur. Phys. J. A31 (2007) 691, arXiv:hep-ph/0610131.
- [26] I. M. Narodetskii, A. N. Plekhanov, and A. I. Veselov, Spectroscopy of baryons containing two heavy quarks in nonperturbative quark dynamics, JETP Lett. 77 (2003) 58, arXiv:hep-ph/0212358, [Pisma Zh. Eksp. Teor. Fiz.77,64(2003)].
- [27] L. Tang, X.-H. Yuan, C.-F. Qiao, and X.-Q. Li, Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules, Commun. Theor. Phys. 57 (2012) 435, arXiv:1104.4934.

- [28] J.-R. Zhang and M.-Q. Huang, Heavy flavor baryon spectra via QCD sum rules, Chin. Phys. C33 (2009) 1385, arXiv:0904.3391.
- [29] I. M. Narodetskii and M. A. Trusov, *The Doubly heavy baryons*, Nucl. Phys. Proc. Suppl. 115 (2003) 20, arXiv:hep-ph/0209044, [,20(2002)].
- [30] A. V. Kiselev, A. V. Berezhnoy, and A. K. Likhoded, Quark-diquark structure and masses of doubly charmed baryons, arXiv:1706.09181.
- [31] C. Alexandrou and C. Kallidonis, Low-lying baryon masses using $N_f = 2$ twisted mass clover-improved fermions directly at the physical point, arXiv:1704.02647.
- [32] N. Mathur, R. Lewis, and R. M. Woloshyn, Charmed and bottom baryons from lattice NRQCD, Phys. Rev. D66 (2002) 014502, arXiv:hep-ph/0203253.
- [33] R. Lewis, N. Mathur, and R. M. Woloshyn, Charmed baryons in lattice QCD, Phys. Rev. D64 (2001) 094509, arXiv:hep-ph/0107037.
- [34] M. Padmanath, R. G. Edwards, N. Mathur, and M. Peardon, Spectroscopy of doubly-charmed baryons from lattice QCD, Phys. Rev. D91 (2015), no. 9 094502, arXiv:1502.01845.
- [35] H.-W. Lin et al., Heavy-Baryon Spectroscopy from Lattice QCD, Comput. Phys. Commun. 182 (2011) 24, arXiv:1002.4710.
- [36] UKQCD, J. M. Flynn, F. Mescia, and A. S. B. Tariq, Spectroscopy of doubly charmed baryons in lattice QCD, JHEP 07 (2003) 066, arXiv:hep-lat/0307025.

- [37] L. Liu, H.-W. Lin, K. Orginos, and A. Walker-Loud, Singly and Doubly Charmed J=1/2 Baryon Spectrum from Lattice QCD, Phys. Rev. D81 (2010) 094505, arXiv:0909.3294.
- [38] T.-W. Chiu and T.-H. Hsieh, Baryon masses in lattice QCD with exact chiral symmetry, Nucl. Phys. A755 (2005) 471, arXiv:hep-lat/0501021.
- [39] H. Na and S. Gottlieb, Heavy baryon mass spectrum from lattice QCD with 2+1 dynamical sea quark flavors, PoS LATTICE2008 (2008) 119, arXiv:0812.1235.
- [40] R. A. Briceno, H.-W. Lin, and D. R. Bolton, Charmed-Baryon Spectroscopy from Lattice QCD with $N_f = 2 + 1 + 1$ Flavors, Phys. Rev. **D86** (2012) 094504, arXiv:1207.3536.
- [41] C. Alexandrou et al., Strange and charm baryon masses with two flavors of dynamical twisted mass fermions, Phys. Rev. D86 (2012) 114501, arXiv:1205.6856.
- [42] G. Bali, S. Collins, and P. Perez-Rubio, Charmed hadron spectroscopy on the lattice for $N_f = 2 + 1$ flavours, J. Phys. Conf. Ser. **426** (2013) 012017, arXiv:1212.0565.
- [43] C. Alexandrou *et al.*, Baryon spectrum with $N_f = 2 + 1 + 1$ twisted mass fermions, Phys. Rev. **D90** (2014), no. 7 074501, arXiv:1406.4310.
- [44] Z. S. Brown, W. Detmold, S. Meinel, and K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD, Phys. Rev. D90 (2014), no. 9 094507, arXiv:1409.0497.
- [45] PACS-CS, Y. Namekawa et al., Charmed baryons at the physical point in 2+1 flavor lattice QCD, Phys. Rev. D87 (2013), no. 9 094512, arXiv:1301.4743.
- [46] C.-W. Hwang and C.-H. Chung, Isospin mass splittings of heavy baryons in heavy quark symmetry, Phys. Rev. D78 (2008) 073013, arXiv:0804.4044.

- [47] S. J. Brodsky, F.-K. Guo, C. Hanhart, and U.-G. Meißner, Isospin splittings of doubly heavy baryons, Phys. Lett. B698 (2011) 251, arXiv:1101.1983.
- [48] M. Karliner and J. L. Rosner, *Isospin splittings in baryons with two heavy quarks*, arXiv:1706.06961.
- [49] B. Guberina, B. Melić, and H. Štefančić, Inclusive decays and lifetimes of doubly charmed baryons, Eur. Phys. J. C9 (1999) 213, arXiv:hep-ph/9901323.
- [50] V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Lifetimes of doubly charmed baryons: Ξ_{cc}^+ and Ξ_{cc}^{++} , Phys. Rev. **D60** (1999) 014007, arXiv:hep-ph/9807354.
- [51] C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, Lifetime of doubly charmed baryons, Commun. Theor. Phys. 49 (2008) 993, arXiv:0704.0016.
- [52] A. V. Berezhnoy and A. K. Likhoded, *Doubly heavy baryons*, Phys. Atom. Nucl. **79** (2016) 260, [Yad. Fiz. 79, 151 (2016)].
- [53] A. V. Berezhnoy, A. K. Likhoded, and M. V. Shevlyagin, Hadronic production of B⁺_c mesons, Phys. Atom. Nucl. 58 (1995) 672, arXiv:hep-ph/9408284, [Yad. Fiz. 58, 730 (1995)].
- [54] K. Kolodziej, A. Leike, and R. Ruckl, Production of B⁺_c mesons in hadronic collisions, Phys. Lett. B355 (1995) 337, arXiv:hep-ph/9505298.
- [55] A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Doubly charmed baryon production in hadronic experiments, Phys. Rev. D57 (1998) 4385, arXiv:hep-ph/9710339.

[56] F.-S. Yu et al., Weak decays of doubly charmed baryons, arXiv:1703.09086. CLHCP (22/12/2017)