

"Decay constants" of doubly heavy baryons in QCD sum rules

Zhen-Xing Zhao Shanghai Jiao Tong University 2017. 12

CLHCP-2017@Nanjing University

arXiv:1711.10289

Xiao-Hui Hu, Yue-Long Shen, Wei Wang and Zhen-Xing Zhao

Outline

- Introduction
- QCD sum rules study
- Numerical results
- Summary and outlook

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2017

PRL **119,** 112001 (2017)

Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}

R. Aaij et al.* (LHCb Collaboration)

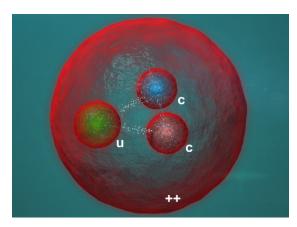
(Received 6 July 2017; revised manuscript received 2 August 2017; published 11 September 2017)

A highly significant structure is observed in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum, where the Λ_c^+ baryon is reconstructed in the decay mode $pK^-\pi^+$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++} . The difference between the masses of the Ξ_{cc}^{++} and Λ_c^+ states is measured to be 1334.94 \pm 0.72(stat.) \pm 0.27(syst.) MeV/ c^2 , and the Ξ_{cc}^{++} mass is then determined to be $3621.40 \pm 0.72 (\text{stat.}) \pm 0.27 (\text{syst.}) \pm 0.14 (\Lambda_c^+) \text{ MeV}/c^2$, where the last uncertainty is due to the limited knowledge of the Λ_c^+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb⁻¹, and confirmed in an additional sample of data collected at 8 TeV.

DOI: 10.1103/PhysRevLett.119.112001

Properties • Mass

- Lifetime
- Transition form factors
- Decay modes



Quantum numbers and quark content

Baryon	Quark Content	s_h^π	J^P	Baryon	Quark Content	s_h^π	J^P
Ξ_{cc}	$\{cc\}q$	1+	$1/2^{+}$	Ξ_{bb}	$\{bb\}q$	1+	$1/2^{+}$
Ξ_{cc}^*	$\{cc\}q$	1+	$3/2^{+}$	Ξ_{bb}^*	$\{bb\}q$	1+	$3/2^{+}$
Ω_{cc}	$\{cc\}s$	1+	$1/2^{+}$	Ω_{bb}	$\{bb\}s$	1+	$1/2^{+}$
Ω_{cc}^*	$\{cc\}s$	1+	$3/2^{+}$	Ω_{bb}^*	$\{bb\}s$	1+	$3/2^{+}$
Ξ_{bc}'	$\{bc\}q$	0+	$1/2^{+}$	Ω_{bc}'	$\{bc\}s$	0+	$1/2^{+}$
Ξ_{bc}	$\{bc\}q$	1+	$1/2^{+}$	Ω_{bc}	$\{bc\}s$	1+	$1/2^{+}$
Ξ_{bc}^*	$\{bc\}q$	1+	$3/2^{+}$	Ω_{bc}^*	$\{bc\}s$	1+	$3/2^{+}$

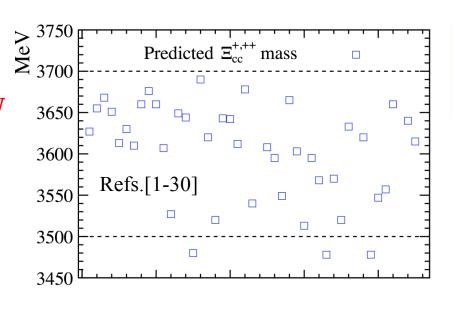
Doubly charmed baryon spectrum ©

- Many models have been applied to calculate masses: quark models or QCD sum rules
 - ✓ Predicted Mass:

$$\mathbf{m}(\mathbf{\mathcal{Z}}_{cc}^{++}) \sim \mathbf{m}(\mathbf{\mathcal{Z}}_{cc}^{+}) \sim (\mathbf{3.5} - \mathbf{3.7}) \text{GeV}$$

 $\mathbf{m}(\mathbf{\Omega}_{cc}) \sim \mathbf{m}(\mathbf{\Xi}_{cc}^{+}) + \mathbf{0.1} \text{GeV}$

✓ Mass splitting between \mathcal{Z}_{cc}^{++} and \mathcal{Z}_{cc}^{+} is a few MeV



Lattice QCD Calculation:

$$m(\Xi_{cc}) \sim 3.6 \text{GeV}, m(\Omega_{cc}) \sim 3.7 \text{GeV}$$

Lifetime

 \odot

● Large uncertainties: differ by a factor of 4~8

$$\bullet \tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+}) \sim \tau(\Omega_{cc})$$

literature	Ξ_{cc}^{++}	Ξ_{cc}^{+}	Ω_{cc}^{+}	
Karliner, Rosner, 2014	185	53		
Chang, Li, Li, Wang, 2007	670	250	210	
Kiselev, Likhoded,2002	460 ± 50	160 ± 50	270 ± 60	
Kiselev, Likhoded, 1998	430 ± 100	110 ± 10		
Guberina, Melic, Stefancic, 1998	1550	220	250	

$$\langle 0|J_H|H(q,s)\rangle = \lambda_H u(q,s)$$

$$\downarrow \\ \text{dimension-3}$$

$$\langle 0|J_H|H(q,s)\rangle = f_H m_H^2 u(q,s)$$
 dimension-1

- Lifetime
- Transition form factors
- \bullet Ξ_{cc} , Ω_{cc}
- \bullet Ξ_{bb} , Ω_{bb}
- \bullet Ξ_{bc} , Ω_{bc}

Applications of QCDSR

- Mass spectrum
- Decay constants
- Transition form factors
- Mixing matrix elements of K-meson and B-meson systems

• ...

The interpolating current

$$J_{\Xi_{QQ}} = \epsilon_{abc} \left(Q_a^T C \gamma^{\mu} Q_b \right) \gamma_{\mu} \gamma_5 q_c,$$

$$J_{\Omega_{QQ}} = \epsilon_{abc} \left(Q_a^T C \gamma^{\mu} Q_b \right) \gamma_{\mu} \gamma_5 s_c,$$

$$J_{\Xi_{bc}} = \frac{1}{\sqrt{2}} \epsilon_{abc} \left(b_a^T C \gamma^{\mu} c_b + c_a^T C \gamma^{\mu} b_b \right) \gamma_{\mu} \gamma_5 q_c,$$

$$J_{\Omega_{bc}} = \frac{1}{\sqrt{2}} \epsilon_{abc} \left(b_a^T C \gamma^{\mu} c_b + c_a^T C \gamma^{\mu} b_b \right) \gamma_{\mu} \gamma_5 s_c.$$

The correlation function

$$\Pi(q) = i \int d^4x e^{iq \cdot x} \langle 0|T[J(x), \bar{J}(0)]|0\rangle,$$

Hadronic level

$$\Pi(q) = \lambda_H^2 \frac{\not q + m_H}{m_H^2 - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\text{Im}\Pi(s)}{s - q^2},$$

only 1/2+ are considered

OPE level

$$\Pi(q) = \not q \Pi_1(q^2) + \Pi_2(q^2)$$

$$\Pi_{i}(q^{2}) = \int_{(m_{Q}+m_{Q'})^{2}}^{\infty} ds \frac{\rho_{i}(s)}{s-q^{2}}, \quad i = 1, 2,$$

$$\rho_{i}(s) = \frac{1}{\pi} \text{Im} \Pi_{i}^{\text{OPE}}(s)$$

Sum rules

$$\lambda_H^2 e^{-m_H^2/M^2} = \int_{(m_Q + m_{Q'})^2}^{s_0} ds \rho_1(s) e^{-s/M^2},$$

$$\lambda_H^2 m_H e^{-m_H^2/M^2} = \int_{(m_Q + m_{Q'})^2}^{s_0} ds \rho_2(s) e^{-s/M^2}.$$

$$\rho_{1}^{\text{pert}}(s) = \frac{6}{(2\pi)^{4}} \int_{\alpha_{\min}}^{\alpha_{\max}} \frac{d\alpha}{\alpha} \int_{\beta_{\min}}^{1-\alpha} \frac{d\beta}{\beta} \left(\left[\alpha \beta s - \alpha m_{Q}^{2} - \beta m_{Q'}^{2} \right]^{2} \right. \\
\left. + (1 - \alpha - \beta) m_{Q} m_{Q'} \left[\alpha \beta s - \alpha m_{Q}^{2} - \beta m_{Q'}^{2} \right] \right), \tag{21}$$

$$\rho_{1}(s) = \rho_{1}^{\text{pert}}(s) + \frac{\langle g_{s}^{2} G^{2} \rangle}{72} \left(m_{Q}^{2} \frac{\partial^{3}}{(\partial m_{Q}^{2})^{3}} + m_{Q'}^{2} \frac{\partial^{3}}{(\partial m_{Q'}^{2})^{3}} \right) \rho_{1}^{\text{pert}}(s) \tag{22}$$

$$+ \frac{4m_{Q} m_{Q'} \langle g_{s}^{2} G^{2} \rangle}{(4\pi)^{4}} \left(\frac{\partial^{2}}{(\partial m_{Q}^{2})^{2}} + \frac{\partial^{2}}{(\partial m_{Q'}^{2})^{2}} \right) \int_{\alpha_{\min}}^{\alpha_{\max}} \frac{d\alpha}{\alpha} \int_{\beta_{\min}}^{1-\alpha} \frac{d\beta}{\beta} (1 - \alpha - \beta) (\alpha \beta s - \alpha m_{Q}^{2} - \beta m_{Q'}^{2})$$

$$+ \frac{2\langle g_{s}^{2} G^{2} \rangle}{(4\pi)^{4}} \left(\frac{\partial}{\partial m_{Q}^{2}} + \frac{\partial}{\partial m_{Q'}^{2}} \right) \int_{\alpha_{\min}}^{\alpha_{\max}} d\alpha \int_{\beta_{\min}}^{1-\alpha} d\beta (3\alpha m_{Q}^{2} + 3\beta m_{Q'}^{2} - m_{Q} m_{Q'} - 4\alpha \beta s) \tag{23}$$

$$\rho_{2}(s) = -\frac{\langle \bar{q}q \rangle}{2\pi^{2}} \int_{\alpha_{\min}}^{\alpha_{\max}} d\alpha (3\alpha (1 - \alpha) s - 2\alpha m_{Q}^{2} - 2(1 - \alpha) m_{Q'}^{2} + 2m_{Q} m_{Q'})$$

$$-\frac{\langle \bar{q}g_{s}\sigma Gq \rangle}{8\pi^{2}} \left(1 + \frac{s}{M^{2}} \right) A(s) - \frac{2\langle \bar{q}g_{s}\sigma Gq \rangle}{(4\pi)^{2}} \left((\alpha_{\max} - \alpha_{\min}) + \frac{1}{2s(\alpha_{\max} - \alpha_{\min})} [\alpha_{\max}(1 - \alpha_{\max}) s + \alpha_{\min}(1 - \alpha_{\min}) s + 4m_{Q} m_{Q'}] \right), \tag{24}$$

QCD Sum rules with the negative parity baryon

D. Jido, N. Kodama and M. Oka, Phys. Rev. D 54, 4532 (1996)

Hadronic level

$$\Pi(q) = \lambda_{+}^{2} \frac{\not q + m_{+}}{m_{+}^{2} - q^{2}} + \lambda_{-}^{2} \frac{\not q - m_{-}}{m_{-}^{2} - q^{2}} + \frac{1}{\pi} \int_{s_{0}}^{\infty} ds \frac{\operatorname{Im}\Pi(s)}{s - q^{2}},$$

$$1/2^{+} \qquad 1/2^{-}$$

$$rac{1}{\pi} {
m Im} \Pi(q) = \lambda_+^2 (\not\! q + m_+) \delta(q^2 - m_+^2) + \lambda_-^2 (\not\! q - m_-) \delta(q^2 - m_-^2) + \cdots$$

Taking $\vec{q} = 0$

$$\frac{1}{\pi} \text{Im}\Pi(q_0) = \gamma_0 A(q_0) + B(q_0) + \cdots,$$

$$A(q_0) = \frac{1}{2} [\lambda_+^2 \delta(q_0 - m_+) + \lambda_-^2 \delta(q_0 - m_-)],$$

$$B(q_0) = \frac{1}{2} [\lambda_+^2 \delta(q_0 - m_+) - \lambda_-^2 \delta(q_0 - m_-)].$$

$$A + B \Rightarrow \lambda_+$$

OPE level

Taking
$$\vec{q}=0$$

$$\frac{1}{\pi} \text{Im}\Pi(q_0) = \gamma_0 \rho^A(q_0) + \rho^B(q_0) + \cdots$$

$$\int_{\Delta}^{\sqrt{s_0}} dq_0 \times \exp\left[-q_0^2/M^2\right]$$
 weight function

$$A + B$$

$$\rho^A + \rho^B$$

$$\lambda_{+}^{2} \exp\left[-\frac{m_{+}^{2}}{M^{2}}\right] = \int_{\Delta}^{\sqrt{s_{0}}} dq_{0}(\rho^{A}(q_{0}) + \rho^{B}(q_{0})) \exp\left[-\frac{q_{0}^{2}}{M^{2}}\right]$$

New sum rules

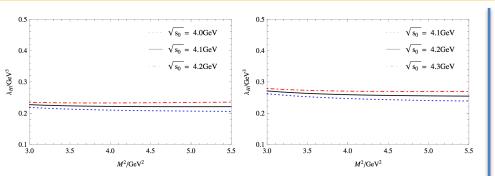


FIG. 1: The dependence on M^2 of the decay constants of Ξ_{cc} and Ω_{cc} at the scale $\mu=2.1\,\mathrm{GeV}$. The continuum threshold are taken as $\sqrt{s_0}=4.0\sim4.2\,\mathrm{GeV}$ and $\sqrt{s_0}=4.1\sim4.3\,\mathrm{GeV}$, respectively.

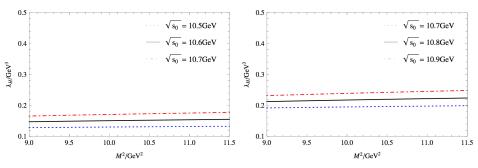


FIG. 2: The dependence on M^2 of the decay constant of Ξ_{bb} and Ω_{bb} at the scale $\mu=2.1\,\mathrm{GeV}$. The continuum threshold is taken as $\sqrt{s_0}=10.5\sim10.7\,\mathrm{GeV}$ and $\sqrt{s_0}=10.7\sim10.9\,\mathrm{GeV}$, respectively.

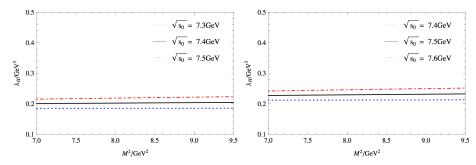


FIG. 3: The dependence on M^2 of the $\lambda_{\Xi_{bc}}$ and $\lambda_{\Omega_{bc}}$ at the scale $\mu=2.1\,\mathrm{GeV}$. In the left and right panel, the continuum threshold are taken as $\sqrt{s_0}=7.3\sim7.5\,\mathrm{GeV}$ and $\sqrt{s_0}=7.4\sim7.6\,\mathrm{GeV}$, respectively.

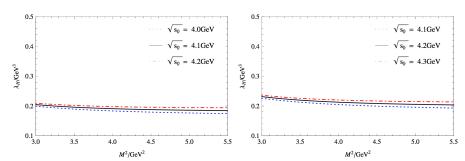


FIG. 5: The dependence on M^2 of the decay constant of Ξ_{cc} and Ω_{cc} at the scale $\mu=2.1\,\mathrm{GeV}$. In the left and right panel, the continuum thresholds are taken as $\sqrt{s_0}=4.0\sim4.2\,\mathrm{GeV}$ and $\sqrt{s_0}=4.1\sim4.3\,\mathrm{GeV}$, respectively.

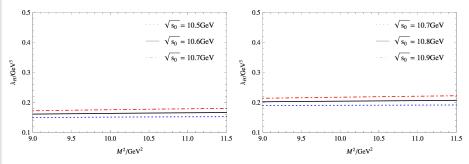


FIG. 6: The dependence on M^2 of the decay constant of Ξ_{bb} and Ω_{bb} at the scale $\mu=2.1\,\mathrm{GeV}$. The continuum thresholds are taken as $\sqrt{s_0}=10.5\sim10.7\,\mathrm{GeV}$ and $\sqrt{s_0}=10.7\sim10.9\,\mathrm{GeV}$ for the left and

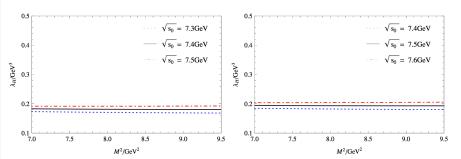


FIG. 7: The dependence on M^2 of the decay constant of Ξ_{bc} and Ω_{bc} at the scale $\mu=2.1\,\mathrm{GeV}$. The continuum thresholds are taken as $\sqrt{s_0}=7.3\sim7.5\,\mathrm{GeV}$ and $\sqrt{s_0}=7.4\sim7.6\,\mathrm{GeV}$ for the left and right panel, respectively.

TABLE III: Decay constants λ_H (in units of GeV³) and f_H (in units of 10^{-3} GeV) for the doubly heavy baryons at the scale $\mu = 2.1$ GeV and $\mu = 1$ GeV: $\lambda_H = f_H m_H^2$. The first and second errors come from the uncertainties of $\sqrt{s_0}$ and M^2 respectively. The sum rule in Eq. (19) has been used.

Baryon	$\lambda_H ({ m GeV}^3)[\mu = 2.1 \ { m GeV}]$	$f_H(10^{-3}\text{GeV})[\mu = 2.1\text{GeV}]$	$\lambda_H (\mathrm{GeV}^3)[\mu = 1 \ \mathrm{GeV}]$	$f_H(10^{-3} \text{GeV})[\mu = 1 \text{GeV}]$
Ξ_{cc}	$0.221 \pm 0.012 \pm 0.002$	$16.9 \pm 1.0 \pm 0.2$	$0.196 \pm 0.011 \pm 0.002$	$15.0 \pm 0.8 \pm 0.1$
Ω_{cc}	$0.258 \pm 0.013 \pm 0.006$	$18.4 \pm 0.9 \pm 0.4$	$0.229 \pm 0.012 \pm 0.005$	$16.4 \pm 0.8 \pm 0.4$
Ξ_{bb}	$0.151 \pm 0.021 \pm 0.002$	$1.47 \pm 0.20 \pm 0.02$	$0.134 \pm 0.018 \pm 0.002$	$1.31 \pm 0.18 \pm 0.02$
Ω_{bb}	$0.219 \pm 0.023 \pm 0.004$	$2.07 \pm 0.22 \pm 0.03$	$0.194 \pm 0.020 \pm 0.003$	$1.84 \pm 0.19 \pm 0.03$
Ξ_{bc}	$0.202 \pm 0.017 \pm 0.001$	$4.20 \pm 0.36 \pm 0.02$	$0.180 \pm 0.015 \pm 0.001$	$3.73 \pm 0.32 \pm 0.02$
Ω_{bc}	$0.230 \pm 0.018 \pm 0.002$	$4.69 \pm 0.36 \pm 0.03$	$0.204 \pm 0.016 \pm 0.001$	$4.16 \pm 0.32 \pm 0.03$

TABLE IV: "Decay constants" λ_H (in units of GeV³) and f_H (in units of 10^{-3} GeV) for the doubly heavy baryons at the scale $\mu = 2.1$ GeV and $\mu = 1$ GeV: $\lambda_H = f_H m_H^2$. The first and second errors come from the uncertainties of $\sqrt{s_0}$ and M^2 respectively. The sum rule in Eq. (34) has been used.

Baryon	$\lambda_H (\text{GeV}^3)[\mu = 2.1 \text{ GeV}]$	$f_H(10^{-3}{\rm GeV})[\mu = 2.1{\rm GeV}]$	$\lambda_H (\text{GeV}^3)[\mu = 1 \text{ GeV}]$	$f_H(10^{-3}{\rm GeV})[\mu = 1{\rm GeV}]$
Ξ_{cc}	$0.189 \pm 0.008 \pm 0.007$	$14.4 \pm 0.6 \pm 0.5$	$0.168 \pm 0.007 \pm 0.006$	$12.8 \pm 0.5 \pm 0.5$
Ω_{cc}	$0.210 \pm 0.008 \pm 0.009$	$15.0 \pm 0.6 \pm 0.7$	$0.186 \pm 0.008 \pm 0.008$	$13.3 \pm 0.5 \pm 0.6$
Ξ_{bb}	$0.164 \pm 0.013 \pm 0.002$	$1.59 \pm 0.12 \pm 0.02$	$0.145 \pm 0.011 \pm 0.002$	$1.41 \pm 0.11 \pm 0.01$
Ω_{bb}	$0.204 \pm 0.014 \pm 0.001$	$1.94 \pm 0.13 \pm 0.01$	$0.181 \pm 0.012 \pm 0.001$	$1.72 \pm 0.12 \pm 0.01$
Ξ_{bc}	$0.181 \pm 0.011 \pm 0.001$	$3.76 \pm 0.23 \pm 0.02$	$0.161 \pm 0.010 \pm 0.001$	$3.33 \pm 0.20 \pm 0.02$
Ω_{bc}	$0.193 \pm 0.011 \pm 0.001$	$3.94 \pm 0.23 \pm 0.01$	$0.171 \pm 0.010 \pm 0.000$	$3.50 \pm 0.21 \pm 0.01$

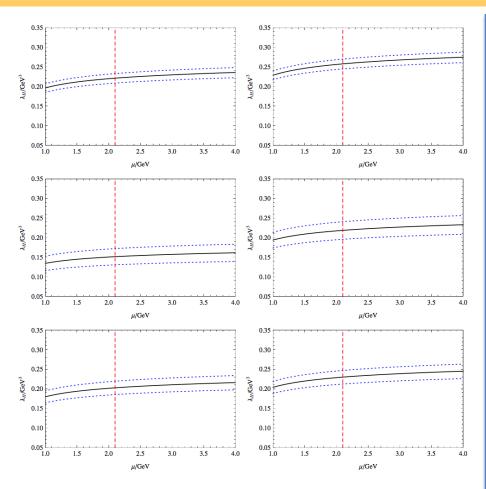


FIG. 4: The scale dependence (see Eq. (38)) of the "decay constants" for Ξ_{cc} , Ω_{cc} (the top two figures), Ξ_{bb} , Ω_{bb} (the middle two figures), Ξ_{bc} and Ω_{bc} (the bottom two figures) with the scale μ ranging from 1 GeV to 4 GeV. The solid line corresponds to $\sqrt{s_0}=4.1$ GeV for Ξ_{cc} , $\sqrt{s_0}=4.2$ GeV for Ω_{cc} , $\sqrt{s_0}=10.6$ GeV for Ξ_{bb} , $\sqrt{s_0}=10.8$ GeV for Ω_{bb} , $\sqrt{s_0}=7.4$ GeV for Ξ_{bc} , $\sqrt{s_0}=7.5$ GeV for Ω_{bc} , respectively. The dotted curves are obtained by varying the $\sqrt{s_0}$ by 0.1 GeV. The vertical line corresponds to the scale $\mu=2.1$ GeV. The sum rule in Eq. (19) is considered.

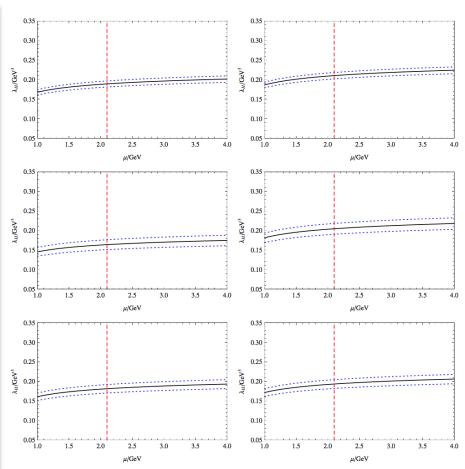


FIG. 8: Same as Figure 4 but for the sum rule in Eq. (34) is considered.

$$\lambda_H(\mu) = \lambda_H(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{7\lambda_0}{2\beta_0}}$$
$$\frac{\gamma_{\lambda_0}}{2\beta_0} = \frac{-6}{25}$$

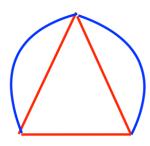
- It is necessary to point out that when including the contributions from the $1/2^-$ baryons the threshold parameter might be somewhat higher. In this analysis, we have approximately use the same values.
- Comparing the results in Table III and Table IV, one can see that the negative parity baryons do not provide significant modifications.
- From Table III and Table IV, we can see that, the decay constant of $\Omega_{QQ'}$ are slightly larger than that of $\Xi_{QQ'}$.
- The decay constants increases with the energy scale.

Summary and outlook

Summary and outlook

- QCD sum rules
- $\bullet \ \Xi_{cc}, \Omega_{cc}, \Xi_{bb}, \Omega_{bb}, \Xi_{bc}, \Omega_{bc}$
- Decay constants
- Positive parity and negative parity

- Lifetime
- ...



Acknowledgements

Thank you for your attention!

backup


```
Subscript[\[Gamma], m0] = -4,
Subscript[\[Beta], 0] (f = 4) = 25/3,
Subscript[\[Gamma], m0]/(2 Subscript[\[Beta], 0]) = -6/25
```