iHCh
 Studies of pentaquarks at LHCb

Mengzhen Wang
Center of High Energy Physics, Tsinghua University
(For the LHCb collaboration)

CLHCP 2017, Dec 22 ${ }^{\text {nd }} 2017$ @Nanjing, China

Outline

- The LHCb experiment
- Studies about pentaquarks from LHCb
- Discovery of pentaquarks in Λ_{b}^{0} decays
- First observation of $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$decays
- First observation of $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$decays
- Summary

The LHCb experiment

- The LHC is a beauty and charm factory
- In LHCb acceptance, $\sigma_{b \bar{b}} \sim 70(140) \mu \mathrm{b}$ at $\sqrt{s}=7(13) \mathrm{TeV}$
- The LHCb detector
- Single-arm forward spectrometer, $2<\eta<5$
- Designed for the study of heavy flavor physics

High-precision vertexing and tracking
Excellent particle identification
Versatile trigger system

Int. J. Mod. Phys. A 30, 1530022 (2015)
JINST 3 (2008) S08005

Resonance in $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays

$\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$amplitude analysis

- Λ^{*} decay chain:
- $\Lambda_{b}^{0} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \Lambda^{*}(\rightarrow p K)$
- 5 angles and 1 mass
- $\theta_{\Lambda_{b}^{0}}, \theta_{K}, \phi_{K}, \theta_{\psi}, \phi_{\psi}, m_{p K}$

Not independent to variables in Λ^{*} decay chain

- Fit the angular distributions. Each node contributes to a helicity coupling and angular structures
- No float parameters in angular structure
- Helicity couplings are float in fit

$\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$amplitude analysis

- Partial wave resonance function

$$
\begin{gathered}
R_{X}(m)=\underbrace{B_{L_{b}^{X}}^{\prime}\left(p, p_{0}, d\right)}_{\text {Blatt-Weisskopf }}\left(\frac{p}{M_{\Lambda_{b}^{0}}}\right)^{L_{\Lambda_{b}^{0}}^{X}} \underset{\begin{array}{l}
\text { Relativistic } \\
\text { Breit-Wigner }
\end{array}}{\text { BW }\left(m \mid M_{0 X}, \Gamma_{0 X}\right)} B_{L_{X}}^{\prime}\left(q, q_{0}, d\right)\left(\frac{q}{M_{0 X}}\right)^{L_{X}}
\end{gathered}
$$

- The fit projection including only Λ^{*} states

Not satisfactory

$\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$amplitude analysis

- Two P_{c}^{+}states are required to get acceptable fits
- 6D amplitude analysis allows to measure the resonance parameters

Branching fraction of $\Lambda_{b}^{0} \rightarrow P_{c}^{+}(J / \psi p) K^{-}$

Chinese Physics C 40 (2016) 011001

- Absolute branching fraction of $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$measured

Fraction of P_{c}^{+}from the $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$amplitude analysis

$$
\begin{aligned}
& \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow P_{c}^{+} K^{-}\right) \mathcal{B}\left(P_{c}^{+} \rightarrow J / \psi p\right)=\underset{\mathbb{I}_{-}}{\boldsymbol{f}_{-}^{-}\left(P_{c}^{-}\right)} \mathfrak{H}\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right) \\
& =\left\{\begin{array}{lll}
\left(2.66 \pm 0.22 \pm 1.33_{-0.38}^{+0.48}\right) \times 10^{-5} & \text { for } & P_{c}(4380)^{+}, \\
\left(1.30 \pm 0.16 \pm 0.35_{-0.18}^{+0.23}\right) \times 10^{-5} & \text { for } & P_{c}(4450)^{+},
\end{array}\right.
\end{aligned}
$$

$\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$amplitude analysis

- One way to examine the existence of P_{c}^{+}resonance states: search them in other decay channels
- $\frac{B\left(\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right)} \sim 0.08$ due to Cabibbo suppression effect

PRL. 117, 082003 (2016)

- Obtained $1885 \pm 50 \Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$ candidates with run-I data. Use them to examine the exotic hadron contribution from the $P_{c}^{+} \rightarrow J / \psi p$ states.
- The amplitude model includes several $N^{*} \rightarrow p \pi^{-}$resonances.

$\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$amplitude analysis

- If $P_{c}(4380)^{+}, P_{\mathrm{c}}(4450)^{+}$and $Z_{c}(4200)^{-}$are included in fit model, the total significance for them is 3.1σ

PRL. 117, 082003 (2016)

- The rate is consistent with the results of $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$ decays, taking into account the Cabibbo suppression.

$\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$amplitude analysis

- If assume the contribution of $Z_{c}(4200)^{-}$is negligible, the model with two P_{c}^{+}resonance yields a significance of 3.3σ

PRL. 117, 082003 (2016)

Observation of $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$

- The $P_{c}(4450)^{+}$mass is just above the $\left[\chi_{c 1} p\right]$ threshold.
- $m_{P_{c}(4450)^{+}}-m_{\chi_{c 1}}-m_{p} \sim 0.9 \mathrm{MeV}$
- Real resonance or kinematic re-scattering?

PRD 92, 071502 (2015)

(a)

(b)

- Kinematic re-scattering would not lead to $P_{c}(4450)^{+}$ peaking in $\left[\chi_{c 1} p\right]$ invariant mass
- The initial stage: observe these decays $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$

Observation of $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$

- First observation with LHCb Run-I data. $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$ as control mode to measure the branching fractions
- Reconstruct $\chi_{c\{1,2\}}$ with $J / \psi \gamma, J / \psi$ with $\mu^{+} \mu^{-}$
- Gradient-boosted Decision Tree to subtract background
- Λ_{b}^{0} mass fit with J / ψ and $\chi_{c 1}$ mass constrained:
- Mass peak of $\chi_{c 2} p K^{-}$is shifted (wrong mass hypothesis).

PRL. 119, 062001 (2017)

Background subtracted $\chi_{c J}$ mass distribution, with no $\chi_{c 1}$ mass-constraint

Observation of $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$

PRL. 119, 062001 (2017)

- Measure the branching fraction:
- $\frac{B\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right)}=0.242 \pm 0.021, \frac{B\left(\Lambda_{b}^{0} \rightarrow \chi_{c 2} p K^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right)}=0.248 \pm 0.026$
- Some unexpected difference with B^{0} decays:
- $\frac{B\left(\Lambda_{b}^{0} \rightarrow \chi_{c 2} p K^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}\right)}=1.02 \pm 0.11, \frac{B\left(B^{0} \rightarrow \chi_{c 2} K^{*}\right)}{B\left(B^{0} \rightarrow \chi_{c 1} K^{*}\right)}=0.17 \pm 0.05$
- Obtain $453 \pm 25 \chi_{c 1}$ candidates. Need more data for the $m\left(\chi_{c 1} p\right)$ investigation
- Number of $\chi_{c 1}$ candidates with Run-I and Run-II data is expected to be 4 times compared to the Run-I data

 Observation of $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$

- Open strangeness pentaquark $P_{c s}$ predicted in the $J / \psi \Lambda$ structure ($m \sim 4650 \mathrm{MeV}, \Gamma \sim 10 \mathrm{MeV}$) ${ }^{[P h y s R e v c .93 .065203]}$
- Should be seen in $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$: similar topology as $\Lambda_{b}^{0} \rightarrow J / \psi p K$, with a u-quark replaced by an s-quark

(a)

(b)
- First observation of this decay with entire Run-I data

Observation of $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$

- Use $\Lambda_{b}^{0} \rightarrow J / \psi \Lambda$ as control channel.
- Reconstruct J / ψ with $\mu^{+} \mu^{-}$, reconstruct Λ with $p \pi^{-}$

- Separate analyses for Λ that decays inside (LL) or outside (DD) the Vertex Detector
- Gradient-boosted Decision Tree for event selection
- $\frac{f_{\Xi_{b}}}{f_{\Lambda_{b}^{0}}} \frac{B\left(\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)}=0.0419 \pm 0.0029 \pm 0.0014$
- $f_{\left\{\Xi_{b}, \Lambda_{b}^{0}\right\}}$ are the $b \rightarrow\left\{\Xi_{b}, \Lambda_{b}^{0}\right\}$ fragmentation functions.
- An amplitude analysis is expected with Run-I and Run-II data

Summary

- LHCb is a huge factory of heavy quark baryons
- Discovery of two pentaquark states in $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$ decays
- Search for P_{C}^{+}resonances in other decay channels
- Analysis in $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$decays shows consistent results
- First observation of $\Lambda_{b}^{0} \rightarrow \chi_{c\{1,2\}} p K^{-}$decays
- Amplitude analysis is under way for possible $\chi_{c 1} p$ structure
- Search for new kind of pentaquarks
- First observation of $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$decays
- Search for open strangeness pentaquark $P_{c S}$ expected

Thank you for your attention!

