

Studies of pentaquarks at LHCb

Mengzhen Wang Center of High Energy Physics, Tsinghua University (For the LHCb collaboration)

CLHCP 2017, Dec 22nd 2017 @Nanjing, China

Outline

- The LHCb experiment
- Studies about pentaguarks from LHCb
 - Discovery of pentaquarks in Λ_b^0 decays
 - First observation of $\Lambda_b^0 \to \chi_{c\{1,2\}} pK^-$ decays
 - First observation of $\Xi_h^- \to J/\psi \Lambda K^-$ decays
- Summary

The LHCb experiment

- The LHC is a beauty and charm factory
 - In LHCb acceptance, $\sigma_{b\bar{b}} \sim 70(140) \, \mu b$ at $\sqrt{s} = 7(13) \, \text{TeV}$
- The LHCb detector
 - Single-arm forward spectrometer, $2 < \eta < 5$
 - Designed for the study of heavy flavor physics

High-precision vertexing and tracking
Excellent particle identification
Versatile trigger system

Int. J. Mod. Phys. A 30, 1530022 (2015) JINST 3 (2008) S08005

Resonance in $\Lambda_b^0 \to J/\psi p K^-$ decays

$\Lambda_b^0 \to J/\psi p K^-$ amplitude analysis

- Λ^* decay chain:
 - $\Lambda_b^0 \to J/\psi(\to \mu^+\mu^-)\Lambda^*(\to pK)$
- 5 angles and 1 mass
 - $\theta_{\Lambda_h^0}$, θ_K , ϕ_K , θ_{ψ} , ϕ_{ψ} , m_{pK}

- P_c^+ decay chain:
 - $\Lambda_b^0 \to P_c^+(\to J/\psi(\to \mu^+\mu^-)p)K$
- 6 angles and 1 mass
 - $\theta_{\Lambda_b^0}^{P_c}$, ϕ_{P_c} , $\phi_{\psi}^{P_c}$, θ_{P_c} , $\phi_{\mu}^{P_c}$, $\theta_{\psi}^{P_c}$, ϕ_{ψ} , $m_{J/\psi p}$

Not independent to variables in Λ^* decay chain ϕ_{Λ_b} rest frame $\phi_{\Lambda_c} = 0$ $\phi_{\Lambda_c} = 0$

- Fit the angular distributions. Each node contributes to a helicity coupling and angular structures
 - No float parameters in angular structure
 - Helicity couplings are float in fit

$\Lambda_b^0 \to J/\psi p K^-$ amplitude analysis

Partial wave resonance function

$$R_X(m) = B'_{L_{A_b^0}}(p,p_0,d) \left(\frac{p}{M_{A_b^0}}\right)^{L_{A_b^0}} \text{BW}(m|M_{0X},\Gamma_{0X}) B'_{L_X}(q,q_0,d) \left(\frac{q}{M_{0X}}\right)^{L_X} \text{Relativistic}$$
 Blatt-Weisskopf Breit-Wigner

• The fit projection including only Λ^* states

acceptable Events/(15 MeV) 1800 1400 1400 data background LHCb ---**+**-- Λ(1405) ---- Λ(1520) $\Lambda(1600)$ $\Lambda(1670)$ $\Lambda(1690)$ 1200 ···* ·· Λ(1800) Λ(1810) 1000 ---**☆**-- Λ(1820) ---▼--- Λ(1830) 800 Λ(1890) ·---- Λ(2100) 600 ·--<u>-</u> Λ(2110) ···★-- Λ(2350) 400 200 m_{Kp} [GeV]

PRL. 115, 072001 (2015)

Not satisfactory

$\Lambda_b^0 \to J/\psi p K^-$ amplitude analysis

- Two P_c^+ states are required to get acceptable fits
 - 6D amplitude analysis allows to measure the resonance parameters

PRL. 115, 072001 (2015)

State	$Mass(MeV/c^2)$	$\mathrm{Width}(\mathrm{MeV}/c^2)$	J^P
$P_c(4380)^+$	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	$\frac{3}{2}^{-}$
$P_c(4450)^+$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	$\frac{5}{2}^{+}$

- The best solution of spin-parity is $(\frac{3}{2}^{-}, \frac{5}{2}^{+})$, while $(\frac{3}{2}^{+}, \frac{5}{2}^{-})$ and $(\frac{5}{2}^{-}, \frac{3}{2}^{+})$ are not excluded
- The existence of these two particles is confirmed in another model-independent analysis PRL 117, 082002 (2016)

Branching fraction of $\Lambda_b^0 \to P_c^+(J/\psi p)K^-$

Chinese Physics C 40 (2016) 011001

• Absolute branching fraction of $\Lambda_b^0 \to J/\psi p K^-$ measured

Fraction of P_c^+ from the $\Lambda_b^0 \to J/\psi p K^-$ amplitude analysis

$$\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = f(P_c^+) \mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)$$

$$= \begin{cases} (2.66 \pm 0.22 \pm 1.33^{+0.48}_{-0.38}) \times 10^{-5} & \text{for } P_c(4380)^+, \\ (1.30 \pm 0.16 \pm 0.35^{+0.23}_{-0.18}) \times 10^{-5} & \text{for } P_c(4450)^+, \end{cases}$$

$\Lambda_b^0 \to J/\psi p \pi^-$ amplitude analysis

- One way to examine the existence of P_c^+ resonance states: search them in other decay channels
- $\frac{B(\Lambda_b^0 \to J/\psi p \pi^-)}{B(\Lambda_b^0 \to J/\psi p K^-)} \sim 0.08$ due to Cabibbo suppression effect

PRL. 117, 082003 (2016)

- Obtained $1885 \pm 50 \ \Lambda_b^0 \rightarrow J/\psi p \pi^-$ candidates with run-I data. Use them to examine the exotic hadron contribution from the $P_c^+ \rightarrow J/\psi p$ states.
- The amplitude model includes several $N^* \to p\pi^-$ resonances.

$\Lambda_b^0 \to J/\psi p \pi^-$ amplitude analysis

• If $P_c(4380)^+$, $P_c(4450)^+$ and $Z_c(4200)^-$ are included in fit model, the total significance for them is 3.1σ

PRL. 117, 082003 (2016)

• The rate is consistent with the results of $\Lambda_b^0 \to J/\psi p K^-$ decays, taking into account the Cabibbo suppression.

$\Lambda_b^0 \to J/\psi p \pi^-$ amplitude analysis

• If assume the contribution of $Z_c(4200)^-$ is negligible, the model with two P_c^+ resonance yields a significance of $3.3\sigma^-$ PRL 117, 082003 (2016)

Observation of $\Lambda_b^0 \to \chi_{c\{1,2\}} pK^-$

- The $P_c(4450)^+$ mass is just above the $[\chi_{c1}p]$ threshold.
 - $m_{P_c(4450)^+} m_{\chi_{c1}} m_p \sim 0.9 \text{ MeV}$
- Real resonance or kinematic re-scattering?

PRD 92, 071502 (2015)

- Kinematic re-scattering would not lead to $P_c(4450)^+$ peaking in $[\chi_{c1}p]$ invariant mass
- The initial stage: observe these decays $\Lambda_b^0 \to \chi_{c\{1,2\}} p K^-$

Observation of $\Lambda_b^0 \to \chi_{c\{1,2\}} pK^-$

- First observation with LHCb Run-I data. $\Lambda_b^0 \to J/\psi p K^-$ as control mode to measure the branching fractions
- Reconstruct $\chi_{c\{1,2\}}$ with $J/\psi\gamma$, J/ψ with $\mu^+\mu^-$
- Gradient-boosted Decision Tree to subtract background
- Λ_b^0 mass fit with J/ψ and χ_{c1} mass constrained:
 - Mass peak of $\chi_{c2}pK^-$ is shifted (wrong mass hypothesis). PRL 119, 062001 (2017)

Background subtracted χ_{cJ} mass distribution, with no χ_{c1} mass-constraint

Observation of $\Lambda_b^0 \to \chi_{c\{1,2\}} pK^-$

PRL. 119, 062001 (2017)

Measure the branching fraction:

•
$$\frac{B(\Lambda_b^0 \to \chi_{c1} pK^-)}{B(\Lambda_b^0 \to J/\psi pK^-)} = 0.242 \pm 0.021, \frac{B(\Lambda_b^0 \to \chi_{c2} pK^-)}{B(\Lambda_b^0 \to J/\psi pK^-)} = 0.248 \pm 0.026$$

- Some unexpected difference with B^0 decays:
 - $\frac{B(\Lambda_b^0 \to \chi_{c2} pK^-)}{B(\Lambda_b^0 \to \chi_{c1} pK^-)} = 1.02 \pm 0.11, \frac{B(B^0 \to \chi_{c2} K^*)}{B(B^0 \to \chi_{c1} K^*)} = 0.17 \pm 0.05$
- Obtain $453 \pm 25 \chi_{c1}$ candidates. Need more data for the $m(\chi_{c1}p)$ investigation
- Number of χ_{c1} candidates with Run-I and Run-II data is expected to be 4 times compared to the Run-I data

Observation of $\Xi_b^- o J/\psi \Lambda K^-$

- Open strangeness pentaquark P_{cs} predicted in the $J/\psi\Lambda$ structure ($m{\sim}4650$ MeV, $\Gamma{\sim}10$ MeV)[PhysRevC.93.065203]
- Should be seen in $\Xi_b^- \to J/\psi \Lambda K^-$: similar topology as $\Lambda_b^0 \to J/\psi p K$, with a u-quark replaced by an s-quark

First observation of this decay with entire Run-I data

Observation of $\Xi_b^- \to J/\psi \Lambda K^-$

- Use $\Lambda_b^0 \to J/\psi \Lambda$ as control channel.
- Reconstruct J/ψ with $\mu^+\mu^-$, reconstruct Λ with $p\pi^-$

PLB 772 (2017) 265-273

- Separate analyses for Λ that decays inside (LL) or outside (DD) the Vertex Detector
- Gradient-boosted Decision Tree for event selection
- $\frac{f_{\Xi_b}}{f_{\Lambda_b^0}} \frac{B(\Xi_b^- \to J/\psi \Lambda K^-)}{B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.0419 \pm 0.0029 \pm 0.0014$
 - $f_{\{\Xi_b,\Lambda_b^0\}}$ are the $b o \{\Xi_b,\Lambda_b^0\}$ fragmentation functions.
- An amplitude analysis is expected with Run-I and Run-II data

Summary

- LHCb is a huge factory of heavy quark baryons
- Discovery of two pentaquark states in $\Lambda_b^0 \to J/\psi p K^-$ decays
- Search for P_c^+ resonances in other decay channels
 - Analysis in $\Lambda_b^0 \to J/\psi p \pi^-$ decays shows consistent results
 - First observation of $\Lambda_b^0 \to \chi_{c\{1,2\}} p K^-$ decays
 - Amplitude analysis is under way for possible $\chi_{c1}p$ structure
- Search for new kind of pentaquarks
 - First observation of $\Xi_h^- \to J/\psi \Lambda K^-$ decays
 - Search for open strangeness pentaquark P_{cs} expected

Thank you for your attention!