CP violation in **B** decays

デ統 华中师范大学 ON BEHALF OF LHCb (and ATLAS/CMS for a few results) COLLABORATION

Outline

Introduction

> Summary

Selected results from LHCb (a few results from ATLAS/CMS)

Publications in 2017

LHCb-PAPER-2017-030 LHCb-CONF-2017-004 JHEP 11 (2017) 170 JHEP 08 (2017) 037 LHCb-PAPER-2017-048

PLB 777 (2018) 16-30

CP violation

Standard Model (SM) works beautifully up to few hundred GeV, must be an effective theory valid up to some scale

- Sources of CP violation:
 - Beyond the standard model (BSM) are needed to explain the large matter/antimatter asymmetry observed in the universe
- Most BSM physics models predict additional heavy particles:
 - Enter in internal loops (Box and Penguin diagrams)
 - Lead to sizeable modification of observables such as CP violating phases

Precise measurements of CP observables, compared with SM can probe the presence of BSM physics

Paths to new Physics at LHC

Direct search

Masses and production cross section limited by collision energy

Indirect search (Flavour physics)

The "quantum" way

Sensitive to much higher mass scales O(10 - 100TeV) CP violation measurements!

CP violation in the Standard Model

CKM matrix: unitary, 3*3 matrix describing charged-current weak interactions (3 angles, one phase).

$$\begin{array}{ccc} \mathsf{d} & \mathsf{S} & \mathsf{b} \\ \mathsf{U} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{I} \\ \lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{array} \right) \\ \end{array}$$

CKM phase:

• The only source of CPV in the SM quark sector

> Why B decays?

- Measurements overconstrain the SM picture of CPV
- Larger angles, similar size sides $V_{ud}V_{ud}^* + V_{cd}V_{cd}^* + V_{td}V_{td}^* = 0$

CP violation phenomenology

CPV in decays:

- Need CP invariant (strong) phase δ and CPV (weak) phase $oldsymbol{\phi}$
- Example: $B^{\pm} \rightarrow J/\psi K^{\pm}$

$$A(P \to f) = a_1 e^{i\delta_1} e^{i\phi_1} + a_2 e^{i\delta_2} e^{i\phi_2}$$

$$A(\bar{P} \to \bar{f}) = a_1 e^{i\delta_1} e^{-i\phi_1} + a_2 e^{i\delta_2} e^{-i\phi_2}$$

$$\to \Delta |A|^2 \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

<u>CPV in mixing:</u>

- Mass eigenstates vs flavour eigenstates:
- Example: lepton charge asym in $B_s^0 o D_s^{\mp} \mu^{\pm} \nu_{\mu} X$ decays

 $|P_{L,H}\rangle = p |P^{0}\rangle \pm q |\overline{P}^{0}\rangle$ \rightarrow CPV if $|q/p| \neq 1$

<u>CPV in interference between mixing and decay:</u>

- Neutral meson decaying
- S_f: interference between mixing and decay
- C_f: direct CPV
- Example: ϕ_s

$$\frac{A(\bar{P} \to f) - A(P \to f)}{A(\bar{P} \to f) + A(P \to f)} = \frac{C_f \cos(\Delta m t) - S_f \sin(\Delta m t)}{\cosh\left(\frac{\Delta \Gamma t}{2}\right) + D_f \sinh\left(\frac{\Delta \Gamma t}{2}\right)}$$

LHCb detector

LHCb is a forward spectrometer initially designed for b, c physics Unique acceptance: $2 < \eta < 5$ **Momentum resolution: 0.4%** at 5 GeV, 0.6% at 100 GeV **Excellent track and vertex** reconstruction **Good PID separation Flexible trigger** □trigger low momentum objects

JINST 3 (2008) S08005

Measuring B meson

Typical requirements:

CKM angle γ

$\geq \gamma = -\arg(V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$

 $> \gamma$ is still the least known angle of the Unitarity Triangle

> Only CP-violating parameter that can be measured from tree-level decays

 \succ Theoretically clean: $|\delta_{\gamma} \leq O(10^{-7})|$

Two main routes:

Time-independent measurements: e.g. $B \rightarrow DK$ Time-dependent analyses with B_s decays: $B_s \rightarrow D_s K$ Signal yields are small (BR $\approx 10^{-7}$), interference between favoured and suppressed decays is small

CP observables in $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ and $B^{\pm} \rightarrow D^{(*)}\pi^{\pm}$

CP observables in $B^{\pm} \rightarrow DK^{*\pm}$

CPV IN B DECAYS, HANG YIN

Followed the same strategy as previous LHCb combination: JHEP 12 (2016) 087

γ LHCb combination

> Use several $B \rightarrow DK$ measurements (85 observables, 37 parameters)

LHCb combination: $(76.8^{+5.1}_{-5.7})^{0}$

CKM indirect constraint: $(65.3^{+1.0}_{-2.5})^{o}$

LHCb can reach 4^o end of Run II and better than 0.4^o precision with phase-2 upgrade. <u>CERN-LHCC-2017-003 (2017)</u>

Determination of β

- $> \beta = -arg(V_{cd}V_{cb}^*/V_{td}V_{tb}^*) : \sim 22^o$ (indirect determination in SM)
 - Interference between mixing and decay in $B^0 \rightarrow (c\overline{c})K_s$ is sensitive to β
- The B-factories still dominate the world average
 - $\beta = (21.9 \pm 0.7)^{o}$ [HFLAV]
 - LHCb Run 1 results close to it

LHCb is expected to reach 0. 6^o (0. 2^o) precision with Run 2 (phase-1 upgrade)

 $\varphi_{CP} = \varphi_{mix} - 2\varphi_{decay} \sim 2\beta$

 $sin(2\beta) \equiv sin(2\phi_1) \underset{\text{Summer 2016}}{\text{HFLAV}}$

decay

 $C\overline{C}K_{S}$

BaBar 0.69 ± 0.03 ± 0.01 PRD 79 (2009) 072009 BaBar χ₀ K_S PRD 80 (2009) 112001 $0.69 \pm 0.52 \pm 0.04 \pm 0.07$ BaBar J/\u03c6 (hadronic) K_ $1.56 \pm 0.42 \pm 0.21$ PRD 69 (2004) 052001 Belle $0.67 \pm 0.02 \pm 0.01$ PRL 108 (2012) 171802 $0.84_{-1.04}^{+0.82} \pm 0.16$ ALEPH PLB 492, 259 (2000) $3.20^{+1.80}_{-2.00} \pm 0.50$ OPAL EPJ C5, 379 (1998) 0.79 +0.41 CDF PRD 61, 072005 (2000) LHCb $0.73 \pm 0.04 \pm 0.02$ PRL 115 (2015) 031601 Belle5S $0.57 \pm 0.58 \pm 0.06$ PRL 108 (2012) 171801 Average 0.69 ± 0.02 HFLAV -2 -1 0 1 2 3

12/23/2017

$sin(2\beta)$ from $B^0 \rightarrow (c\overline{c})K_s$

CP violation in the **B**_s system

- $\beta_{s} = -\arg(V_{cs}V_{cb}^{*}/V_{ts}V_{tb}^{*})$: SM prediction $\phi_{s} = -2\beta_{s} = -36.5^{+1.3}_{-1.2}$ mrad
 - $B_S \rightarrow J/\psi \phi$ is a golden channel for measure β_S
 - Additional sensitivity comes from other $b \rightarrow c \overline{c} s$ transitions
 - Tevatron results have been improved by > 10 by LHC

> LHCb:

- *J*/ψφ : PRL 114, 041801 (2015)
- *J*/ψ*KK*: JHEP 08 (2017) 037
- *J*/ψππ: PLB 736 (2014) 186
- ψ(2S)φ: PLB 762 (2016) 253-262
- $D_S^+ D_S^-$: PRL 113, 211801 (2014)
- > **CMS:** $J/\psi\phi$ PLB 757 (2016) 97
- **ATLAS:** $J/\psi\phi$: JHEP 08 (2016) 147

ϕ_s measurements from LHC

 $\phi_s = -0.058 \pm 0.049 \pm 0.006$

First time that ϕ_s is measured in the final states dominated by a tensor

Measurement of $\phi_s^{c\bar{c}s}$ in $B_s^0 \to J/\psi K^+ K^-$ above $\phi(1020)$

Selection using MVA analysis, background subtraction via sWeight in $m(J/\psi K^+K^-)$ and multi-dimensional fit to decay time, $m_{K^+K^-}$ and the helicity angles.

Efficiencies and decay time control channel: $B^0 \to J/\psi K^{*0} (\to K^+\pi^-)$

Dominant systematic uncertainty: resonance modelling and background subtraction

New LHCb average (including $J/\psi\phi$ and $J/\psi\pi\pi$): $\phi_s = 1 \pm 37 \,\mathrm{mrad}$

lields

State of art of ϕ_s

Precision improved by > 10 since Tevatron results

New Physics is not large, the uncertainty needs to be further reduced

HFLAV: $\phi_s = -21 \pm 31 \text{ mrad}$ (preliminary)

- ✓ Atlas expects a significant increase in sensitivity with a new innermost pixel detector
- LHCb sensitivity with phase-2 upgrade expected to be < 3 mrad [CERN-LHCC-2017-0023 (2017)]
- ✓ Important to control size of the penguin diagram contribution

LHCb-PAPER-2017-048

2200

 K^{*0}

 \bar{K}^{*0}

 $b \rightarrow d\overline{d}s$

First measurement of ϕ_s using $B_s \rightarrow (K^+\pi^-) (K^-\pi^+)$ decays

> Gluonic penguin decay: new physics could enter both mixing and decay

Very complicated time-dependent angular analysis: many resonants (750-1600 MeV)

Decay	Mode	j_1	j_2	Allowed values of h	Number of amplitudes
$B^0_s \to (K^+\pi^-)^*_0 (K^-\pi^+)^*_0$	scalar-scalar	0	0	0	1
$B_s^0 \to (K^+ \pi^-)_0^* \overline{K}^* (892)^0$	scalar-vector	0	1	0	1
$B^0_s \to K^*(892)^0 (K^-\pi^+)^*_0$	vector-scalar	1	0	0	1
$B_s^0 \to (K^+ \pi^-)_0^* \overline{K}_2^* (1430)^0$	scalar-tensor	0	2	0	1
$B_s^0 \to K_2^* (1430)^0 (K^- \pi^+)_0^*$	tensor-scalar	2	0	0	1
$B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$	vector-vector	1	1	$0, \parallel, \perp$	3
$B_s^0 \to K^*(892)^0 \overline{K}_2^*(1430)^0$	vector-tensor	1	2	$0, \parallel, \perp$	3
$B_s^0 \to K_2^*(1430)^0 \overline{K}^*(892)^0$	tensor-vector	2	1	$0, \parallel, \perp$	3
$B_s^0 \to K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	tensor-tensor	2	2	$0, \parallel_1, \perp_1, \parallel_2, \perp_2$	5
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1200 \\ \end{array} \\ 1000 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 600 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} 800 \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} 800 \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$					

 B_{\circ}^{0}

CP violation in B mixing

> D0 reported an anomalous like-sign dimuon asymmetry with ~3 σ from SM [Phys. Rev. D 89, 012002 (2014)]

> Consider a flavour-specific final state *f* :

$$B^{0}_{(s)} \to f \quad \text{or} \quad \overline{B}^{0}_{(s)} \to B^{0}_{(s)} \to f$$
$$\overline{B}^{0}_{(s)} \to \overline{f} \quad \text{or} \quad B^{0}_{(s)} \to \overline{B}^{0}_{(s)} \to \overline{f}$$
$$a_{sl} \equiv \frac{\Gamma(\overline{B}^{0}_{(s)}(t) \to f) - \Gamma(\overline{B}^{0}_{(s)}(t) \to \overline{f})}{\Gamma(\overline{B}^{0}_{(s)}(t) \to f) + \Gamma(\overline{B}^{0}_{(s)}(t) \to \overline{f})} \cong \frac{\Delta\Gamma}{\Delta M} \tan \phi_{M}$$

LHCb measured results are consistent with SM prediction [Phys. Rev. Lett. 117, 061803 (2016), Phys. Rev. Lett. 114, 041601 (2015)]

> ATLAS measured same- and opposite-sign charge asymmetries based on the μ charge from a top and the charge of the soft μ from b-hadron in $t\bar{t}$ events [JHEP 02 (2017) 071]

• Four CP asymmetries (one mixing and three direct) consistent with SM

CPV in mixing is very small in the SM

Summary

> Results found so far are compatible with SM prediction

• New Precision measurements in b mesons

Many of them are within the physics program of LHCb and its upgrade, ATLAS and CMS also start to contribute to these physics

With the statistics achieved by LHC during the Run-1 and Run-2, more results are coming

• Stay tuned for many interesting new results!

ϕ_s combination (2017 summer)

LHCb:

- J/ψφ [PRL114, 041801 (2015)]
- $J/\psi K^+K^-$ [arXiv:1704.08217 (2017)]
- $J/\psi \pi^+\pi^-$ [Phys. Lett. B736, (2014) 186]
- $\psi(2S)\phi$ [Phys. Lett. B762 (2016) 253-262]
- $D_s^+ D_s^-$ [PRL113, 211801 (2014)]

CMS:

J/ψφ [Phys. Lett. B 757 (2016) 97]

ATLAS:

J/ψφ [JHEP 08 (2016) 147]

JHEP 07 (2017) 021

Observation of the $B_s^0 \rightarrow \eta_c \phi$

 $> \eta_c \phi$ final state is CP-even: no need angular analysis

> Using Run-I data, which is not enough to perform ϕ_s measurement

> Branching ratio measurement is presented

$$\begin{split} & \triangleright \ \eta_c \to p \overline{p}, K^+ K^- \pi^+ \pi^-, \pi^+ \pi^- \pi^+ \pi^-, K^+ K^- K^+ K^- \\ & \triangleright \ \phi \to K^+ K^- \\ & \mathcal{B}(B^0_s \to \eta_c \phi) = (5.01 \pm 0.53 \pm 0.27 \pm 0.63) \times 10^{-4}, \\ & \mathcal{B}(B^0_s \to \eta_c \pi^+ \pi^-) = (1.76 \pm 0.59 \pm 0.12 \pm 0.29) \times 10^{-4}, \end{split}$$

In the future with significant improvement of the hadronic trigger efficiencies, could become of interest to add sensitivity to ϕ_s

Baryon-number violation

> BNV never been seen experimentally \rightarrow strong constraints from photon lifetime

BSM models with flavour-diagonal six fermion vertices allow BNV without violating constraints [PRD 85, 036005 (2012), PLB 721 82 (2013)]

>Unambiguous experimental evidence:

baryon-antibaryon oscillations of hadrons that contain quarks of all three generations (usb)

CP violation in $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays

> Direct CPV had never been observed in baryon decays

- > Large CPV effects are expected in charmless Λ_b decays ($A_{CP} \sim 20\%$)
- Y.K. Hsiao and C.Q. Geng [PRD 91, 116007 (2015)]
- > Both tree and penguin diagrams contribute with similar amplitude

 $a_{CP} \neq 0$ at 3.3 σ was seen

