Physics with Four Leptons in the ATLAS experiment

Yusheng Wu (吴雨生) University of Science and Technology of China

On behalf of ATLAS Collaboration

CLHCP, Nanjing University, Dec. 22-24, 2017

Facts about Four-Lepton Final Sate

- ☐ Clean signature
- ☐ Small cross-sections
- ☐ Straightforward to trigger low pT
 - ⇔ Studies span from O(GeV) to O(TeV)
- ☐ Precision in lepton calibration and resolution
 - ⇔ Uncertainty under control
- ☐ Fully reconstructable final state
 - ⇔ Measurement
- ☐ Importance grows as luminosity increases
- \Box Generally, no τ -leptons considered in the studied channels

Physics with Four Leptons

Heavy resonances, SUSY, extra-dimension, BSM Higgs, Anomalous boson self-couplings Dark matter ...

Production of Diboson, Higgs ZZ/WW, Di-onia, Tri-boson VH, ttH, HH, ...

Physics and Scales

Selected Four-lepton Results in ATLAS

For a more complete search, take a look at ATLAS public page

Title	CME and Int. Luminosity	Paper Link	4l Mass Scale
4l Lineshape	8 TeV, 20.3 fb ⁻¹	PLB 753 (2016) 552-572, <u>Public Page</u>	90-1000 GeV
J/ψ Pair Production	8 TeV, 11.4 fb ⁻¹	EPJC 77 (2017) 76, <u>Public Page</u>	~10 GeV
Z→4l Production	7+8 TeV, 24.8 fb ⁻¹	PRL 112, 231806 (2014), <u>Public Page</u>	~90 GeV
On-shell ZZ	13 TeV, 36.1 fb ⁻¹	Submitted to PRD, <u>Public Page</u>	~200 GeV
On-shell H→4I	13 TeV, 36.1 fb ⁻¹	Submitted to JHEP, <u>Public Page</u>	125 GeV
Off-shell H \rightarrow 4I/2I2 ν	8 TeV, 20.3 fb ⁻¹	EPJC 75 (2015) 335, <u>Public Page</u>	~400 GeV
$H \rightarrow Dark Zs \rightarrow 4I$	13 TeV, 36.1 fb ⁻¹	To be submitted to JHEP, <u>Public Page</u>	125 GeV
Dark matter search in Z(II)+vv	13 TeV, 36.1 fb ⁻¹	PLB 776 (2017) 318, <u>Public Page</u>	200-600 GeV
Heavy Resonances	13 TeV, 36.1 fb ⁻¹	To be submitted to EPJC, <u>Public Page</u>	400-1500 GeV
SUSY with 4l	13 TeV, 13.3 fb ⁻¹	Conference Note, <u>Public Page</u>	~200 GeV

Four-lepton Lineshape

Probing multi-scale physics at one go

Differential measurement compared to state-of-the-art MC predictions

NLO+PS qq->Z->4I

NLO+PS qq->ZZ->4I
with NNLO QCD and NLO EW kfactors

LO+PS non-res. gg->4l Includes quark loop, offshell Higgs, interference

NLO+PS gg->H->4l corrected with NNLO QCD, NLO EW, NNLL resummation

J/ψ Pair Production

Four muons with J/ ψ mass window constraint

Differential cross-sections in total PS

- compared to partial-NLO NRQCD color singlet

Discrepancy at large mass

- possibly due to missing feed-down calculation

Double Parton Interaction

Measured lower σ_{eff} To be followed up with future measurements

- \rightarrow ATLAS $(J/\psi + J/\psi, \sqrt{s} = 8 \text{ TeV})$
- --- ATLAS (4 jets, \(\sigma \) = 7 TeV)

σ_{eff} [mb]

- + D0 (2 γ + 2 jets, \sqrt{s} = 1.96 TeV)
- D0 (J/ψ + Υ, √s = 1.96 TeV)
- \rightarrow LHCb (Y(1S) + D^{0,+}, \sqrt{s} = 7 TeV)
- \rightarrow LHCb ($\Upsilon(1S) + D^{0,+}$, $\sqrt{s} = 8 \text{ TeV}$)
- -- LIIOD (1(13) + D , 18 = 0 16V)
- ATLAS (Z + J/ ψ lower limit, \sqrt{s} = 8 TeV)
- \rightarrow D0 (J/ ψ + J/ ψ , \sqrt{s} = 1.96 TeV)
- → D0 (γ + 3 jets, 2014, √s = 1.96 TeV)
- -- D0 (γ + b/c + 2 jets, √s = 1.96 TeV)
 -- CMS (W + 2 jets, √s = 7 TeV)
- → ATLAS (W + 2 jets, √s = 7 TeV)
- → LHCb (J/ ψ + D⁰, \sqrt{s} = 7 TeV)
- -- D0 (γ + 3 jets, √s = 1.96 TeV)
- $CDF (\gamma + 3 \text{ jets, } \sqrt{s} = 1.8 \text{ TeV})$
- --- CDF (4 jets, √s = 1.8 TeV)
- -- UA2 (4 jets lower limit, \(\sigma \) = 0.63 TeV)

8

Soft lepton p_T or m(2l) down to ~5 GeV

Phys. Rev. Lett. 112, 231806 (2014)

Radiative Z ->41 decay measured with good precision

$$\Gamma_{Z\to 4\ell}/\Gamma_Z = (3.20 \pm 0.25 \text{ (stat)} \pm 0.13 \text{ (syst)}) \times 10^{-6}$$

Consistent with SM prediction from PowHeg: (3.33 \pm 0.01) x 10⁻⁶

SM is so hard to beat

Measurements of mass, pT, angles, jets for different physics targets

Neutral self-couplings not observed yet, will continue to search for neutral aTGCs down to $O(10^{-4}) \sim SM$ loop effects

On-shell H→4l

Off-shell Higgs

- Large off-shell Higgs production due to on-shell ZZ and ttbar
- Insights to the Higgs total width,
 which direct measurement cannot

Phys. Rev. D88 (2013) 054024 with assumptions

Upper limit on $\Gamma(H)$ about 20 MeV, with assumptions on K-factors

Dark Sector

One Zd scenario

Two Zd scenario A few outliers to be followed up

Motivated to look at hidden dark sector connected to SM Higgs => Look at resonant peaks in low m(II) regions

Kinematic constraints due to Higgs mass and/or dark-Z masses

Limits on BSM cross-sections

Z(II) + vv has a clean signature and a larger branching fraction

- Backgrounds larger, but still under control
- SM diboson irreducible to BSM signals (better way to separate ?)

Constraint to simplified WIMP models, caveats of assumptions when comparing to direct exp.

Heavy Resonances

SUSY

Charginos to LSPs to >=4 leptons in RPV models

- Veto Z bosons
- Sensitive variables
 - MET
 - m(eff): scalar pT sum of MET, jets, leptons

No clear signal observation => Limits on masses

Summary

- ☐ Brief summary of four-lepton physics results in ATLAS
 - ❖ Interesting and efficient to study all possible physics associated to a well-controlled and precise final state
- ☐ Four-lepton final state has its unique characteristics
 - Rich in physics, broad in scale
 - Precision measurement possible, more important as lumi. grows
 - ❖ Sensitivity to searches may not be the best comparing to other channels (jets, MET, ...), but it can probe unique phase spaces, e.g. low mass, low pT
- ☐ Stay tuned for end-of-run-II results!