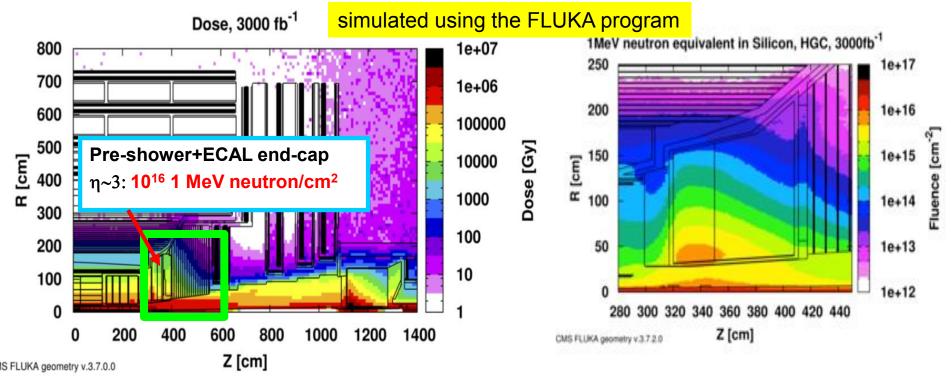

Feng Wang

On behalf of the CMS collaboration

23/12/2017

Outline

- Introduce CMS phase II HGCAL upgrade
- Status of HGCAL upgrade in IHPE
 - 1. HGCAL module beam test
 - 2. HGCAL module assembly
- Summary and next to do
 - **1.** Building mass production center
 - 2. Work plan in IHEP

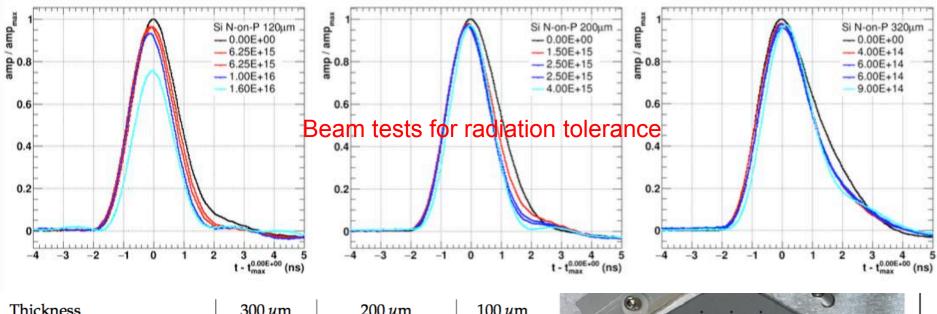


- All detectable particles can leave traces on the calorimeter
- Reconstruct photon, lepton, jet and etc. by particle follow algorithm (PFA)

Detector is exposed to high levels of radiation, especially for forward calorimetry.

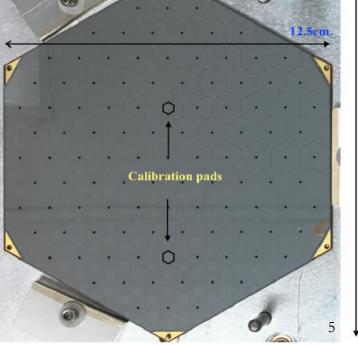
By the end of Run 3 (2023): Up to 300 fb⁻¹

Radiation damage



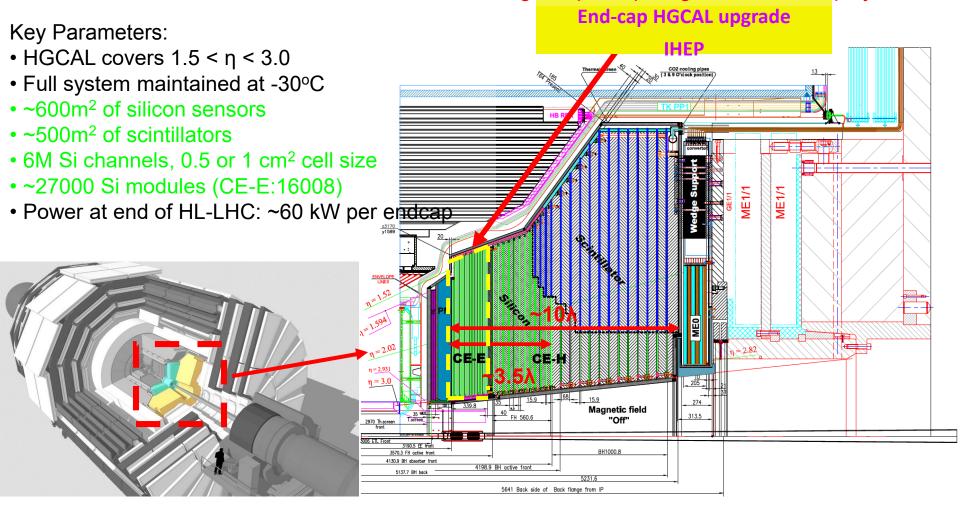
- CMS Co-operation Group Spokesperson Tizianno Camporesi:
 - We need to replace the end cap today, because we underestimated the radiation damage to the detector's sensitive materials
- 2013:

•


- Proposed need to be replaced in 2013
- 2015.04:
 - Determine the HGCAL (Silicon + Tungsten) as a CMS phase II endcap upgrade proposal

IHEP was one of the first ten units to propose the HGCAL program

Thickness	300 µm	200 µm	100 µm		
Maximum dose (Mrad)	3	20	100		
Maximum n fluence (cm^{-2})	6×10^{14}	$2.5 imes 10^{15}$	1×10^{16}		
EE region	$R > 120 \rm cm$	$120 > R > 75 \mathrm{cm}$	$R < 75 {\rm cm}$		
FH region	$R > 100 \rm{cm}$	$100 > R > 60 \mathrm{cm}$	$R < 60 \mathrm{cm}$		
Si wafer area (m²)	290	203	96		
Cell size (cm ²)	1.05	1.05	0.53		
Cell capacitance (pF)	40	60	60		
Initial S/N for MIP	13.7	7.0	3.5		
S/N after 3000 fb ⁻¹	6.5	2.7	1.7		


Design requirementEnergy resolution: $25\%/ sqrt(E) \oplus 1\%$ Time resolution :50 psRadiation tolarence : $1 \times 10^{16} 1 MeV neq/cm^2$

14cm

The CMS upgrade endcap calorimeter: Design

61 universities or institutes in 19 countries and regions participating in the HGCAL project

Endcap Electromagnetic calorimeter (EE): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X0 & ~1.3 λ Front Hadronic calorimeter (FH): Si & scintillator, steel absorbers, 12 layers, ~3.5 λ ₆ Backing Hadronic calorimeter (BH): Si & scintillator, steel absorbers, 12 layers, ~5 λ

Contribution to HGCAL in IHEP

China-IHEP_Beijing in CMS-HGCAL Phase 2 Upgrades Project

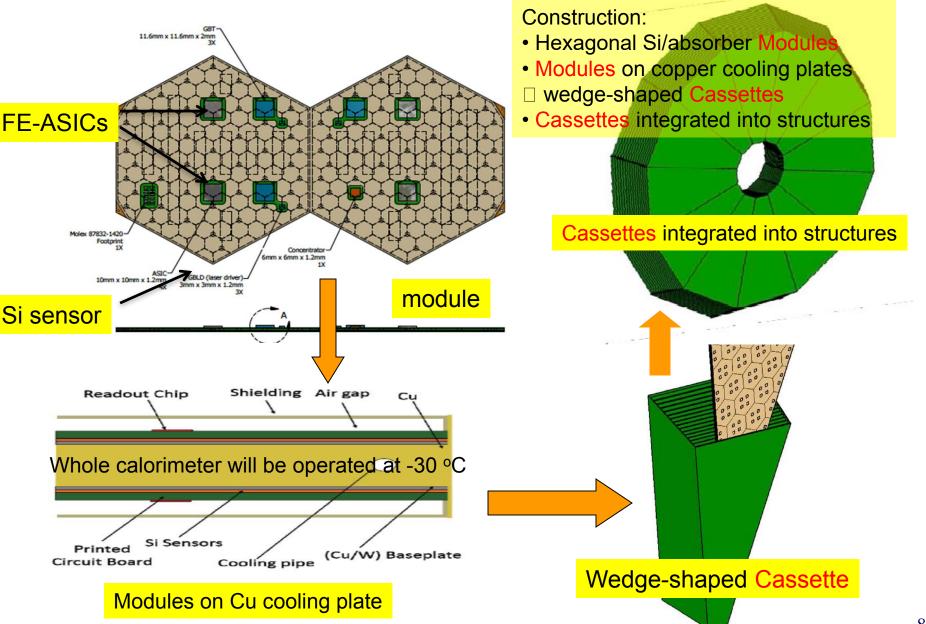
Dear Huaqiao,

CMS has undertaken to upgrade its endcap calorimetry for Phase 2 of the LHC. The Project comprises around 50 Institutes from over 15 countries. The HGCAL project shall be submitting a Technical Design Report (TDR) in November 2017 to the LHCC, the scientific peer review committee of CERN.

The HGCAL Project would like to see the following contributions from the China-IHEP_Beijing Group (with an initial CORE contribution of 1.2 MCHF):

- · Pro-rata (Si+Scint cost/total cost) Contribution to Active Elements
- Contribute to sensor R&D, qualification and testing
- Contribute to fe chips testing
- · Contribute to testing of on-detector electronics boards (PCBs)
- Host a silicon module assembly centre
- Contribute to EC_ECAL and EC_Hadronic assembly and test
- Contribute to 2nd cassette assembly centre at CERN (collective responsibility)
- · Contribute to the installation and cabling/services in UXC
- · Contribute to simulation and performance studies
- Contribute to test beam activities

Please check that the list conforms to our mutual understanding.


2015/01: NSFC: 0.74 M 2016/10: MOST: 2.85 M 2017/03: IHEP: 3 M Future ~?M to apply More?

Assembly HGCAL module

as core contribution

Yours sincerely,

Contracture of CMS end-cap calorimeter

Silicon Detector Module Design of HGCAL

Assembly Center: IHEP-Beijing, BARC-Mumbai, Taiwan, USA (CMU, TTU, UCSB)

Compact detector design: The thickness of the module affects HGC Moliere radius

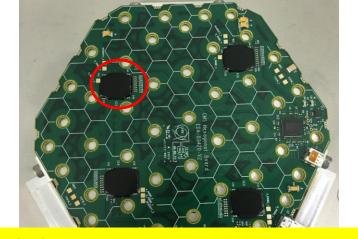
HGCAL ASIC export license progress

From Tejinder Virdee <tejinder.virdee@cern.ch>

Subject Export Licence

01/06/2017, 10:50

- To huaqiao Zhang⁺, Hesheng Chen <chenhs@ihep.ac.cn>⁺
- Cc Tejinder Virdee <tejinder.virdee@cern.ch>n, Drew Baden <drew@umd.edu>n, Achille P 1 more


Dear Hesheng and Huaqiao,

Tiziano has now obtained very encouraging information from CERN, who are in contact with the relevant Swiss authorities, concerning the Export licence. This is summarised in the following statement:

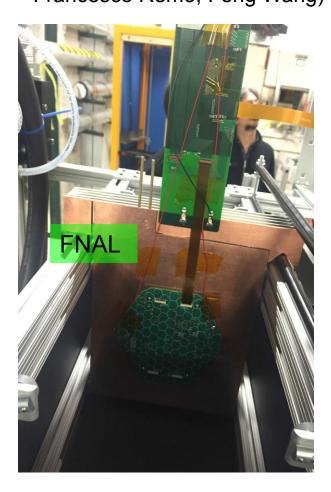
"From the experience gained so far for temporary export licence of dual use electronics chips (for reference they are the class of devices identified by the code3A001.a.1.a of the Annex 2 OCB (Ordonnance sur le Control des Biens CH) received at CERN no problem has been encountered when dealing with Chinese institutes (including IHEP Beijing).

We remind you that regarding electronics developed at TSMC, Taiwan, the temporary export licence will have to be requested, for each chip and for each shipment, from SECO (the swiss State Secretariat for Economic Affairs) through CERN"

Best Regards, Jim

ASIC come to IHEP has no problem

Status of HGCAL in IHEP


- 1) Participate in module assembly which is for beam testing. Research and design HGCAL module assembly program which meet the requirement of thickness and quality control for mass production in the future.
 - Cooperation with UCSB

Support by Ministry of Science and Technology

Status of HGCAL in IHEP

- 2) Participate in beam test of the experimental prototype.
 - Participate in the assembly of the experimental beam device, shift, analysis of experimental beam data at Fermilab and CERN.(Huaqiao Zhang, Binghuan Li, Francesco Remo, Feng Wang)

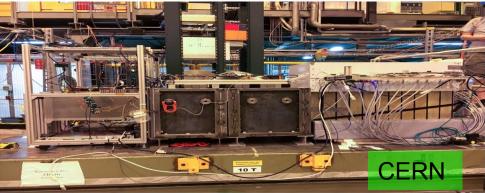
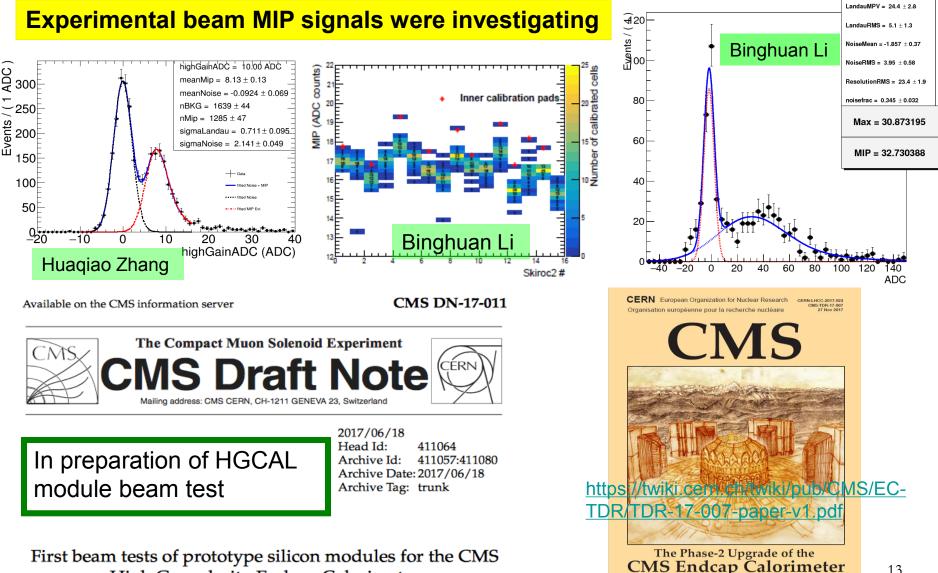
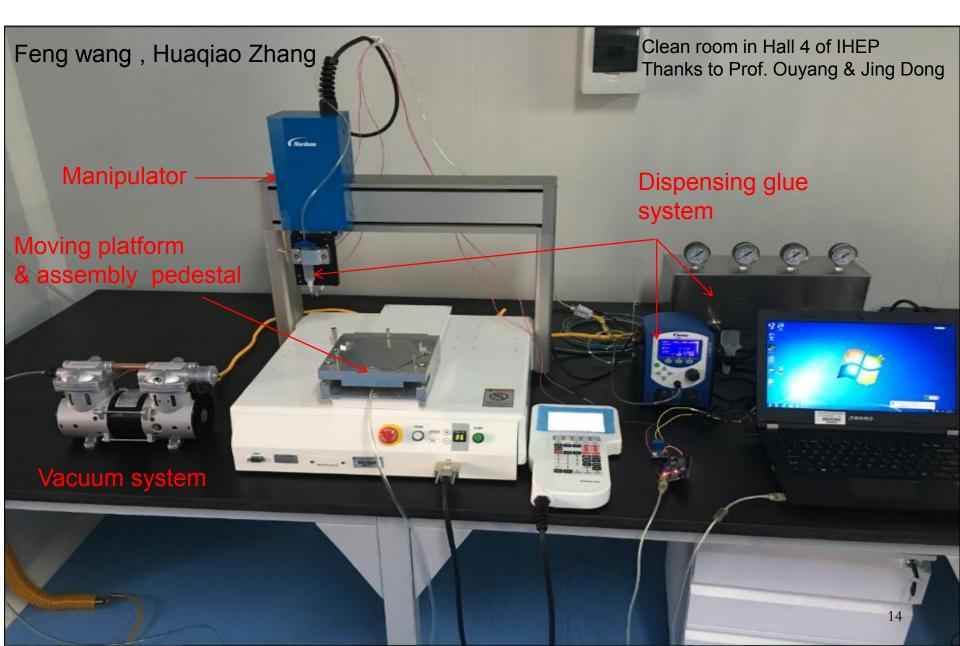



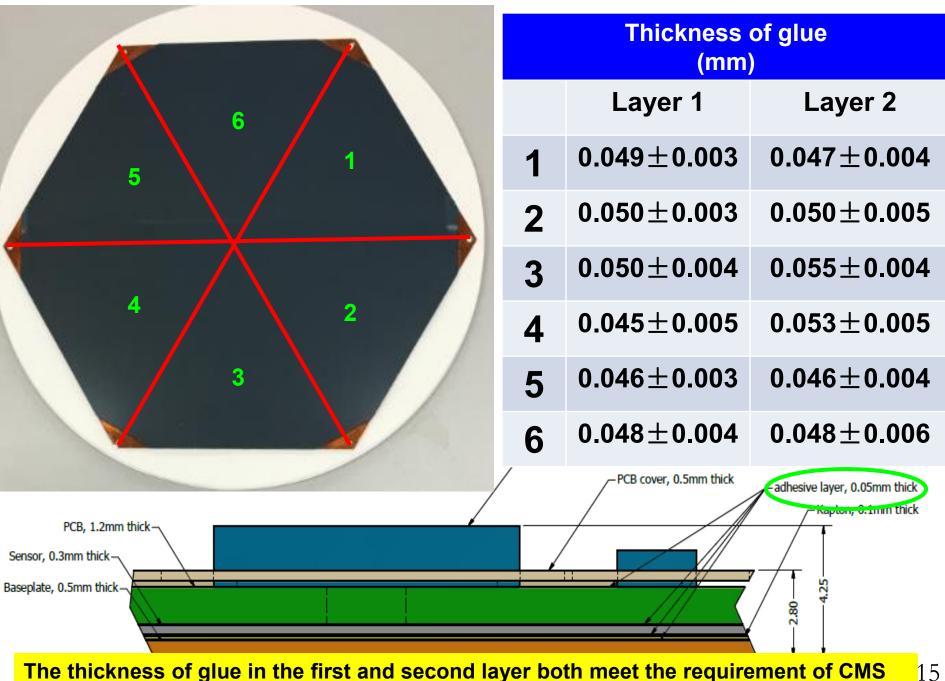
Figure 10.14: CE-E (left), CE-H (centre) and AHCAL (right) on the scissor table in the H2 beam line at CEPN

HGC beam test	location	IHEP
2016/03/21-04/12	FNAL	√
2016/04/18-27	CERN	\checkmark
2016/08/17-24	CERN	√
2016/08/31-09/07	CERN	\checkmark
2016/11/09-14	CERN	√
2017/5/8-15	CERN	\checkmark
2017/7/12-19	CERN	√
2017/09/29-10/02	CERN	\checkmark
2017/10/18-23	CERN	√

Support by Ministry of Science and Technology

China group independently analyzed the data of beam test hg3_cms_h_skiroc28_ch22




13

Technical Design Report

High Granularity Endcap Calorimeter

HGCAL Module assembly system in IHEP

The thickness of glue in the first and second layer both meet the requirement of CMS

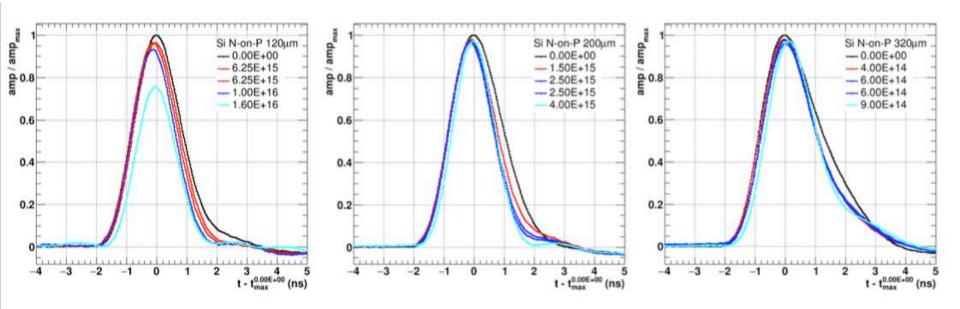
Summary

CMS phase II HGCAL upgrade

1. Determine the HGCAL (Silicon + Tungsten) as a CMS phase II endcap upgrade proposal.

2. Installation and test of detector will be completed in 2025.

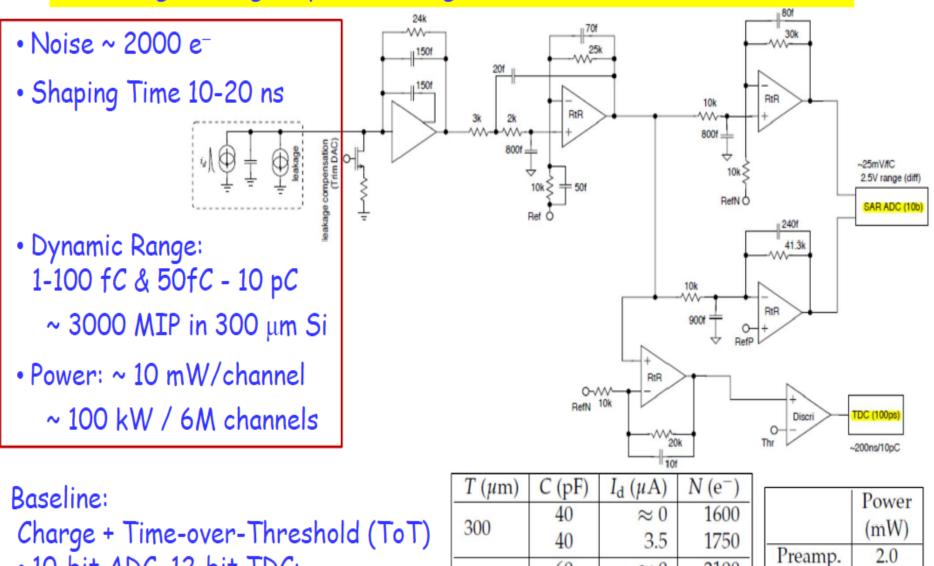
Status of HGCAL upgrade IN IHEP


1. We have been involved in eight module assembly by cooperate with UCSB.

- **2.** Full participate in beam test of HGCAL module in FNAL and CERN.
- 3. Analyze the MIP signal.
- Next to do in IHEP
 - 1. Trying to build the assembly lab
 - 2. Plan to ship a HGCAL module to do cosmic ray test in IHEP

hank you

Silicon Sensor irradiation preliminary study



- Si N-on-P sensor produced by Hamamatsu
- 120, 200, 320 um tested
- Neutron radiation up to 1.6*10¹⁶ 1MeV n/cm²(120um)
- Beam and Sr⁹⁰ tests give consistent results

CMS HGCAL upgrade schedule

HGC 24-06-17		18	19		20		21		22		23	24	25				
н		Test Design (V1 ASIC)	Test Design (DV1 ASICs)	Design Vermication (DVZ ASICS)		Validation (Final Components)											
TDR EDR					=												
Si Sensors			0														
FE ASICS	Ļ				•										o	Design	/proto/ Order
Si Modules					0											Final va	lidation
SiPM On-Tile Scintillator Moo	d <mark>ules</mark>				0											Preseri	es
Cassettes: Si & Mixed						o		i								Procure	ement/production
Mechanics CE-EH CE-EE					0											integra	tion on surface
TPG & Back-End Electronics																Test on	surface
Cooling System								o								Installa	tion
Power supplies								o									
HGC1									Cassette	nsertion	EE onto EH	Test	Float	Ц,			
HGC 2											insertion	EE to EH	st				

目前phasell总体有1-2年的推迟 硅sensor的产能有限 Challenge: Large Dynamic Range @ Low Power and Low Noise

200

100

60

60

60

60

2100

2250

2100

2400

1.5

1.0

4.0

Shaper

ADC

TDC

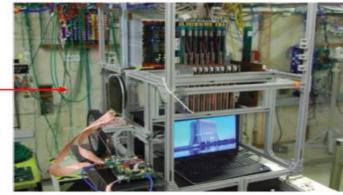
 ≈ 0

5.2

 ≈ 0

10.5

- 10-bit ADC, 12-bit TDC: Existing/tested design
- 20 ns peaking time

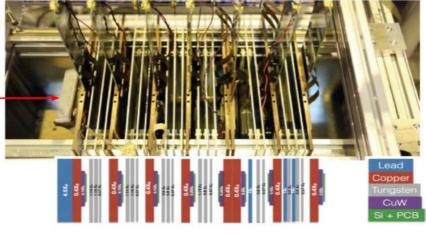

FNAL

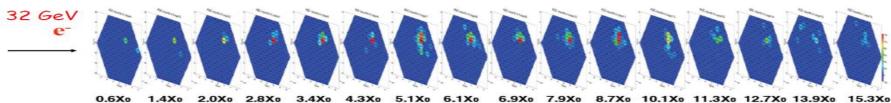
- 15 X_0 with 16 layers
- e⁻ beam at 4-32 GeV

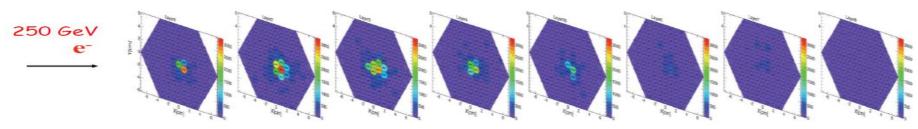
- p at 120 GeV

Beam

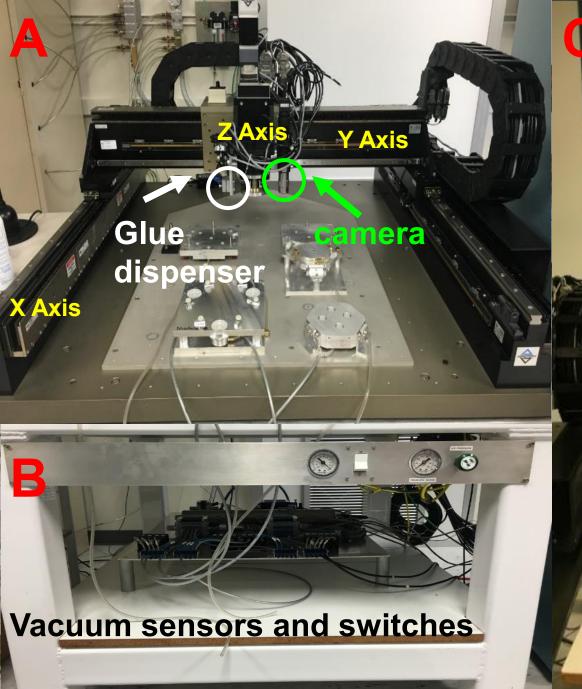
Beam






Basic double sided structure repeated eight times

CERN


- 27 X₀ with 8 layers
- e⁻ beam at 25-250 GeV
- π/μ at 125 GeV
- vary # X₀'s

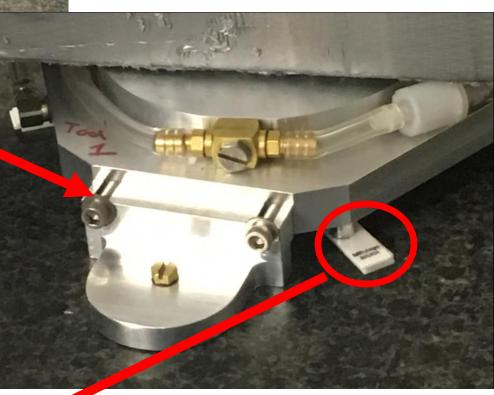
L1:5.1X0 L2:8.5X0 L3:11.9X0 L4:14.7X0 L5:17.2X0 L6:18.7X0 L7:21.1X0 L8:27.07X0

Glue dispenser controller

trole

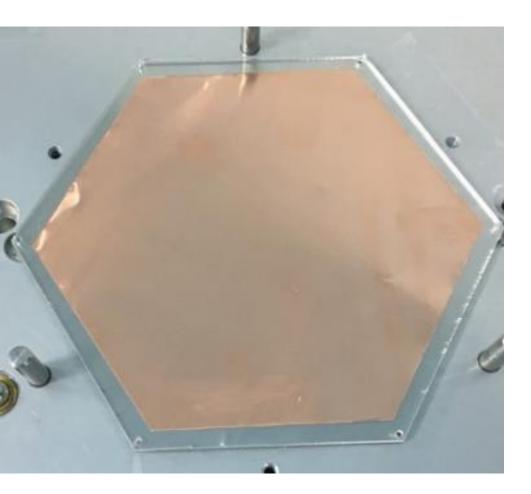
ICON

MR. GANIK


A120

Moti

Software by labview



The glue area has covered more than 70% of the plate area. This parameter has meet the requirement of CMS.

The thickness of copper foil is 0.048 ± 0.002

Thickness of copper foil (mm)						
0.047	0.047					
0.048	0.049					
0.047	0.050					
0.047	0.048					
0.050	0.047					
0.049	0.047					
0.047	0.047					
0.047	0.048					
0.048	0.047					
0.046	0.047					

Adjust this screw to fix the distance between the cover and the pedestal

before

26