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q  small pT respect to beam or jet axis 
q Drell-Yan and Higgs production 
q  final hadron in Semi-Inclusive DIS 
q Event shape broadening: pT around thrust 

axis 

q Large logarithm:  Log[pT/Q] 
Q is heavy boson mass or the collision energy 

pT dependent observables 
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Figure: IR modes have the same virtuality.
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      (p-, p+, pT)       µi,  νi  

pH~(1,   1,   1 ) Q    Q    

pc~(1,   λ2,  λ )Q    pT,  Q 

ps~(λ,   λ , λ )Q     pT,  pT 
 
λ~pT/Q<<1, Q=higgs mass 

  

 
hierarches in virtuality and in rapidity induce large logs: 
Log[µH/µL] and Log[νH/νL] and they should be resummed. 

What to set for µH,L and νH,L? looks trivial but NOT 
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q complicated convolutions in p-space:  

Factorization in p space 
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with each other in transverse momentum space so that the qT of the gauge boson is a sum of
the qT contribution from each emission:

d‡

d2qT dy
= C2

t (M2
t , µ)‡0H(Q2; µ)

⁄
d2q̨T sd2q̨T 1d2q̨T 2”2!

q̨T ≠ (q̨T s + q̨T 1 + q̨T 2)
"

(1.1)

◊ S(q̨T s; µ, ‹)f‹
1

1
q̨T 1, x1, p≠; µ, ‹

2
f‹

2

1
q̨T 2, x2, p+; µ, ‹

2
,

at s = (P1 + P2)2, with colliding protons of momenta P1,2, and gauge boson invariant mass
Q2 and rapidity y. For the case of the Higgs, we have a Wilson coe�cient Ct after integrating
out the top quark. (For DY we just set Ct = 1 in Eq. (1.1).) Here, S is the soft function
accounting for the contribution of soft radiation to q̨T , f‹

1,2 are the TMDPDFs (or beam
functions) accounting for the contribution of radiation collinear to the incoming protons to
q̨T , and they depend on kinematic variables pû = Qeûy = x1,2

Ô
s. The peculiarity of the

factorization is that even though the TMDPDFs form a part of the IR physics, they depend
on the hard scale Q (c.f. [16]), which, as we shall see later, will play an important role in
our resummation formalism. The hard function H encodes virtual corrections to the hard
scattering process, computed by a matching calculation from QCD to SCET. The scale µ

is the renormalization scale normally encountered in the MS scheme of renormalization and
plays the role of separating hard modes (integrated out of SCET) from the soft and collinear
modes, by their virtuality. The additional rapidity renormalization scale ‹, introduced in
[17, 18], arises from the need to separate soft and collinear modes, which share the same
virtuality µ, instead in their rapidity (Fig. 1). The cross section itself is independent of these
arbitrary virtuality and rapidity boundaries, but the renormalization group (RG) evolution
of factorized functions from their natural scales where they have no large logs to the arbitrary
µ, ‹ can be used to resum the large logs in the cross section.

1.1 RG and RRG Evolution in Impact Parameter vs. Momentum Space

These functions obey the renormalization group (RG) equations in µ

µ
d

dµ
Fi = “i

µFi (1.2)

where Fi can be C2
t (M2

t , µ), H(Q2; µ), S(q̨T s; µ, ‹) or f‹
i

(q̨T i, Q, xi; µ, ‹). The RG equations
in ‹ have a more complicated convolution structure:

‹
d

d‹
Gi(q̨T i; ‹) = “i

‹(q̨T i) ¢ Gi(q̨T i; ‹) (1.3)

where Gi can be soft functions or TMDPDFs. The symbol ¢ here indicates convolution
defined as

“‹(q̨T ) ¢ f(q̨T ) =
⁄

d2pT

(2fi)2 “‹(q̨T ≠ p̨T )f(p̨T ) (1.4)

Apart from the complicated structure of the RG equations, the anomalous dimensions them-
selves are not simple functions but are usually plus distributions [18] which makes it even
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q complicated convolutions in p-space:  

q Fourier transform 

q a simple product in b-space 

Factorization in p and b space 
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Figure 1. Left: EFT modes and their scalings in light-cone momentum k± space. For the TMD cross
sections we consider, the small parameter can be taken to be ⁄ ≥ qT /Q or ≥ Qb0 in impact parameter
b space, where b0 = be“E /2. Right: RG and rapidity RG evolution. µ runs between the hard and
soft hyperbolas of virtuality shown in the left-hand figure, while ‹ runs between the soft and collinear
modes which are separated only by rapidity. The evolution is path independent, one convenient path
is shown here.

harder to solve these equations directly in momentum space. A typical strategy to get around
this is to Fourier transform to position (i.e. impact parameter) space, defining

‚f (̨b) ©
⁄

d2qT

(2fi)2 eįb·q̨T f(q̨T ) , ‚f (̨b) © 1
2fi

Âf(b) , b © |̨b| , (1.5)

the latter definitions accounting for the fact that all the distributions we encounter will have
azimuthal symmetry in q̨T or b̨. This then gives ordinary multiplicative di�erential equations
(instead of convolutions), and a closed form solution to the RG equations can be easily
obtained. Moreover the cross section now takes the simpler structure,

d‡

dq2
T

dy
= ‡0fi(2fi)2C2

t (M2
t , µ)H(Q2, µ)

⁄
db bJ0(bqT ) (1.6)

◊ ÂS(b, µ, ‹) Âf‹
1 (b, x1, p≠; µ, ‹) Âf‹

2 (b, x2, p+; µ, ‹) ,

where J0 is the n = 0 Bessel function of the first kind. Note we have changed variables from
qT in Eq. (1.1) to q2

T
in Eq. (1.6). The b-space soft and beam functions ÂS and Âf‹

i
now obey

multiplicative rapidity RGEs in ‹,

‹
d

d‹
ÂGi = “i

‹
ÂGi , (1.7)

whose anomalous dimensions and solutions we shall give below. Only the b integration in
Eq. (1.6) stands in the way of a having a simple product factorization of the momentum-
space cross section. Finding a way to carry it out will be one the main focuses of this paper.

The b-space cross section, defined as the following product of factors in the integrand of
Eq. (1.6):

Â‡(b, x1, x2; µ, ‹) = H(Q2, µ) ÂS(b; µ, ‹) Âf‹
1 (b, x1, p≠; µ, ‹) Âf‹

2 (b, x2, p+; µ, ‹) , (1.8)
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J0(x) : Bessel function from Fourier kernel 



q Solution of RGE resums large logs 

q high scales:  µH, νH~ Higgs mass 
q conventional b-space choice µL,νL ~1/b:   

but Landau pole αs(1/b) and IR cutoff needed  

q p-space µL,νL ~pT:  
NO pole αs(pT) and NO cutoff needed  
but singular in UV limit 

RGE and scale setting 
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like [21]. Then the resummed b-space cross section is Fourier transformed back to momentum
space via Eq. (1.6). The main issue with this procedure is that the strong coupling –s(µ)
in the soft function and TMDPDFs is then evaluated at a b-dependent scale µS,f ≥ 1/b0,
which enters the nonperturbative regime at su�ciently large b in the integral in Eq. (1.6). So
the integrand must be cut o� before reaching the Landau pole in –s. There are quite a few
procedures in the literature to implement precisely such a cuto� by introducing models for
non-perturbative physics, see e.g. [22–26].

Motivated by these observations, in this paper we explore the following main questions:

• Even though the natural scale for minimizing the logarithms in the soft function and
TMDPDFs is a function of the impact parameter b, can we actually set scales directly
in momentum space, after performing the b integration? (without an arbitrary cuto�
of the b integration?)

• If that is possible, can we obtain a closed-form expression for the cross section which
will be accurate to any resummation order and ultimately save computation time?

In Sec. 2 we shall propose a way to answer the first question, and in Sec. 3 we shall
develop a method to answer the second. To aid the reader in quickly grasping the main
points of our paper, we o�er a more detailed-than-usual summary of these sections here,
which is somewhat self-contained and can be used as a substitute for the rest of the paper
upon a first reading. Readers interested in the details of our arguments can then delve into
the main body of the paper. Except for a brief discussion near the end, we emphasize we
address only the perturbative computation of the cross section in this paper.

1.2 A hybrid set of scale choices for convergence of the b integral

Regarding the first question, the issue with leaving the µ, ‹ scales for the soft function and
TMDPDFs unfixed before integrating over b in Eq. (1.6) is that the integral, while avoiding the
Landau pole from long-distance/small-energy scales, is then plagued by a spurious divergence
from large-energy/short-distance emissions [18], e.g. at NLL accuracy:

d‡

dq2
T

dy
= ‡0fi(2fi)2C2

t (M2
t , µT )UNLL(µH , µT , µL)H(Q2; µH)

⁄
db bJ0(bqT ) ÂS(b; µL, ‹L) (1.12)

◊ Âf‹
1 (b, x1, p≠; µL, ‹H) Âf‹

2 (b, x2, p+; µL, ‹H) exp
5
≠�0

–(µL)
fi

ln
3

‹H

‹L

4
ln(µLb0)

6
,

although H, ÂS, Âf‹ are truncated to tree level at NLL while Ct = –s. The hard scale µH

is usually set to iQ to implement what is called fi2 resummation to improve perturbative
convergence [27, 28]. This integral, as we will see below in Eq. (2.34), is still divergent. At
this point, µL and ‹H,L are b-independent and cannot help with regulating the integral. What
we need in Eq. (1.12) is a factor that damps away the integrand for both large and small b. In
this paper, we adopt the approach that there are already terms in the physical cross section
itself that can play the role of this damping factor and that we should use them. Namely, at
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computed in fixed-order QCD perturbation theory contains logs of Qb0 where b0 = be“E /2
(see Eq. (A.39)). Schematically, the expansion takes the form

(2fi)3Â‡(b) = fi(x1)f
ī
(x2) exp

5 Œÿ

n=0

n+1ÿ

m=0

1–s(µ)
4fi

2n

Gnm lnm Qb0

6
, (1.9)

where i, ī = g for Higgs production and i = q for Drell-Yan (DY), and where we ignore e�ects
of DGLAP evolution for the moment (we include them in Eq. (A.39) and in all our analysis
below). This takes the typical form of a series of Sudakov logs. The number of coe�cients
Gnm that need to be known is determined by the desired order of resummed accuracy. Using
the heuristic power counting ln Qb0 ≥ 1/–s in the region of large logs needing resummation,
the leading log (LL) series includes the O(1/–s) terms m = n + 1, the next-to-leading log
(NLL) series the O(1) terms up to m = n, at NNLL the O(–s) terms up to m = n ≠ 1, etc.
When we later talk about resummation in momentum space, we will define our accuracy by
the corresponding terms in the b-space integrand that we have successfully inverse Fourier
transformed (cf. [19]).

For a TMD cross section, the logs in the full QCD expansion Eq. (1.9) are factored into
logs from the hard and soft functions and TMDPDFs of ratios of the arbitrary virtuality and
rapidity factorization scales µ, ‹ and the physical virtuality and rapidity scales defining each
mode. Each function contains logs:

C2
t = C2

t

1
ln µ2

M2
t

2
H = H

1
ln µ2

Q2

2
, ÂS = ÂS

1
ln µb0, ln µ

‹

2
, Âf‹ = Âf‹

1
ln µb0, ln ‹

p±

2
. (1.10)

These logs reflect the natural virtuality and rapidity scales where each function “lives” and
where logs in each are minimized. For example, at one loop, the logs in the QCD result
Eq. (A.39) split up into individual hard, soft, and collinear logs from Eqs. (A.16), (A.28), and
(A.36),

≠ ZH

�0
2 ln2 Qb0 ≠ “0

H ln Qb0 ≠ “0
C

2
t

ln Mtb0 = ≠ZH

�0
2 ln2 µ

Q
+ “0

H ln µ

Q
+ “0

C
2
t

ln µ

Mt

+ ZS

�0
2

1
ln2 µb0 + 2 ln µb0 ln ‹

µ

2
+ Zf �0 ln µb0 ln ‹2

Q2 + 2“0
f ln µb0 , (1.11)

where the individual anomalous dimension coe�cients satisfy the constraints ZH +ZS +2Zf =
0 and “0

H
+ “0

C
2
t

+ 2“0
f

= 0. (For DY, “
C

2
t

= 0.) RG evolution of each factor—hard, soft, and
collinear—in both virtuality and rapidity space from scales where the logs are minimized,
namely, µH ≥ Q, µT ≥ Mt and, naively, µS,f ≥ 1/b0 for the virtuality scales, while ‹S ≥ µS

and ‹f ≥ Q for the rapidity scales, to the common scales µ, ‹ achieve resummation of the large
logs, to an order of accuracy determined by the order to which the anomalous dimensions
and boundary conditions for each function are known and included. This will be reviewed in
further detail in Sec. 2.

This, at least, is the procedure one would follow to resum logs in impact parameter space.
It corresponds, in SCET language, to how to obtain the result of the standard CSS resum-
mation through traditional [10] or modern techniques [20], as well as recent EFT treatments
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eS(b, µL, ⌫H) /

eS / b��0
0
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NLLÕ order and beyond, the soft function evaluated at the low scales µL, ‹L in the integrand
of Eq. (1.12) contains logs of µLb0 that we can use to regulate the integral, see Eq. (A.28).
Since ÂS(b, µL, ‹L) no longer contains large logs (if µL, ‹L are chosen near the natural soft
scales), it is typically truncated to fixed order (see Table 1). However, we know that the
logs themselves still exponentiate, being predicted by the solution Eq. (A.22) to the RG and
‹RG equations. If we could keep the exponentiated one-loop double log in ÂS in Eq. (A.28)
in the integrand of Eq. (1.12), exp(1

2ZS�0 ln2 µLb0), it would play precisely the role that we
desire. Now, as we argue below, if we are going to keep this term exponentiated, we should
also include a piece of the 2-loop rapidity evolution kernel ≥ –2

s ln2 µLb0 ln(‹H/‹L) given by
Eqs. (2.26) and (2.27) in the exponent, as it is of the same form and same power counting, so
that the terms we wish to promote to the exponent of Eq. (1.12) at least at NLL order are:

ÂSexp = exp
5
≠–s(µL)

4fi
ZS

�0
2 ln2 µLb0 +

1–s(µL)
4fi

22
ZS�0—0 ln2 µLb0 ln ‹H

‹L

6
. (1.13)

These are terms that would otherwise be truncated away at NLL accuracy. Since they are
subleading, we are in fact free to choose to include them (and not other subleading terms
that are formally of the same order). While this is admittedly a bit ad hoc, we take the
view that it is no more arbitrary than any regulator or cuto� we might choose to introduce
to Eq. (1.12), and these are terms that actually exist in the expansion of the physical cross
section. We can rephrase this choice of subleading terms in Eq. (1.13) to include in Eq. (1.12)
as part of our freedom to choose the precise scale ‹L in Eq. (1.12) (the variation of which
anyway probes theoretical uncertainty due to missing subleading terms). Namely, if one were
to make a choice of ‹L ≥ µL in ÂS in Eq. (1.12), we propose then shifting that choice to:

‹L æ ‹ú
L = ‹L(µLb0)≠1+p , p = 1

2

5
1 ≠ –s(µL)—0

2fi
ln ‹H

‹L

6
, (1.14)

which we derive in Eqs. (2.37) and (2.39). This achieves the shifting of the terms in the
exponent of Eq. (1.13) that would otherwise be truncated away into the integrand of Eq. (1.12)
where they appear explicitly, and can be used to regulate the b integral. Furthermore, we
will show in Sec. 3 (and summarize below) that with this regulator factor we can actually
evaluate the b integral Eq. (1.12) (semi-)analytically. Maintaining a Gaussian form for the
exponent in ln b inside the b integral will be crucial to this strategy.

Beyond NLL, we will choose to keep the same shifted scale choice Eq. (1.14), but to ensure
that we do not introduce higher powers of logs of µLb0 than quadratic into the exponent of
the integrand in Eq. (1.12), we make one additional modification to how we treat the rapidity
evolution kernel. Namely, in the all orders form of the rapidity evolution kernel:

V (‹L, ‹H ; µL) = exp
5
“S

‹ (µL) ln ‹H

‹L

6
, (1.15)
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that the terms we wish to promote to the exponent of Eq. (1.12) at least at NLL order are:

ÂSexp = exp
5
≠–s(µL)

4fi
ZS

�0
2 ln2 µLb0 +

1–s(µL)
4fi

22
ZS�0—0 ln2 µLb0 ln ‹H

‹L

6
. (1.13)

These are terms that would otherwise be truncated away at NLL accuracy. Since they are
subleading, we are in fact free to choose to include them (and not other subleading terms
that are formally of the same order). While this is admittedly a bit ad hoc, we take the
view that it is no more arbitrary than any regulator or cuto� we might choose to introduce
to Eq. (1.12), and these are terms that actually exist in the expansion of the physical cross
section. We can rephrase this choice of subleading terms in Eq. (1.13) to include in Eq. (1.12)
as part of our freedom to choose the precise scale ‹L in Eq. (1.12) (the variation of which
anyway probes theoretical uncertainty due to missing subleading terms). Namely, if one were
to make a choice of ‹L ≥ µL in ÂS in Eq. (1.12), we propose then shifting that choice to:

‹L æ ‹ú
L = ‹L(µLb0)≠1+p , p = 1

2

5
1 ≠ –s(µL)—0

2fi
ln ‹H

‹L

6
, (1.14)

which we derive in Eqs. (2.37) and (2.39). This achieves the shifting of the terms in the
exponent of Eq. (1.13) that would otherwise be truncated away into the integrand of Eq. (1.12)
where they appear explicitly, and can be used to regulate the b integral. Furthermore, we
will show in Sec. 3 (and summarize below) that with this regulator factor we can actually
evaluate the b integral Eq. (1.12) (semi-)analytically. Maintaining a Gaussian form for the
exponent in ln b inside the b integral will be crucial to this strategy.

Beyond NLL, we will choose to keep the same shifted scale choice Eq. (1.14), but to ensure
that we do not introduce higher powers of logs of µLb0 than quadratic into the exponent of
the integrand in Eq. (1.12), we make one additional modification to how we treat the rapidity
evolution kernel. Namely, in the all orders form of the rapidity evolution kernel:

V (‹L, ‹H ; µL) = exp
5
“S

‹ (µL) ln ‹H

‹L

6
, (1.15)
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modified scale choice ‹ú
L

:

V NLL
S (‹H , ‹ú

L; µL) = exp
;

≠–s(µL)
4fi

4�0 ln(µLb0) ln ‹H

‹ú
L

<
. (2.36)

This can be done with the scale choice:

‹ú
L = ‹L(µLb0)≠1+p (2.37)

The value of p that allows us to obtain the double log terms in Eq. (2.35) is determined by
comparing them with the exponent in Eq. (2.36):

ln V NLL
S (‹H , ‹ú

L; µL) = “S(0)
‹ ln

A
‹H

‹ú
L

B

= ≠4�0
–s

4fi
ln(µLb0)

5
ln

3
‹H

‹L

4
+ (1 ≠ p) ln(µLb0)

6
(2.38)

By comparing above equation to Eq. (2.35) we find

p = 1
2

5
1 ≠ –s—0

2fi
ln

3
‹H

‹L

46
(2.39)

This ensures that we have now resummed all the terms of the form –s ln2(µLb0). (We assume
one did not choose the default ‹L scale with nontrivial b dependence.) Since �0 > 0, the
double log now provides the necessary stability to the exponential kernel in b space (at both
large and small values of b). With this term in place, we can now talk of a systematic power
counting for the fixed order logs, which, hitherto, was not meaningful.

So we now adopt the usual power counting that ln(µLb0) ≥ 1, i.e., this log is small.
We still need to confirm numerically, that the fixed order logs that remain (O(–s ln(µLb0)),
O(–2

s ln3(µLb0)), O(–2
s ln2(µLb0)), etc.), when integrated against our exponent in b space, are

actually small so that our series is well behaved perturbatively. With this power counting in
place, our result for the resummation at NLL then looks like

d‡

dq2
T

dy
= ‡0

2 UNLL(µH , µT , µL)
⁄

db bJ0(bqT ) V NLL(‹H , ‹ú
L; µL)f(x1, µL)f(x2, µL) (2.40)

At NLL, all fixed order logs are subleading and hence not included.
We will find below that not only does the quadratic ln2 µLb0 term in the exponent of the

b integrand in Eq. (2.40) introduced by the scale choice Eq. (2.37) make the integral converge
for both small and large b, it actually makes it integrable analytically (after a very good
numerical approximation for the Bessel function). We will describe this in detail in Sec. 3.
First, we explore how to generalize the above-described procedure beyond NLL.

2.3.3 NNLL and beyond

At NNLL and higher order, we have some freedom in choosing how to update the accuracy
of the rapidity evolution kernel in Eq. (2.26). A simple, standard, choice would simply be to
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modified scale choice ‹ú
L

:
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L; µL) = exp
;

≠–s(µL)
4fi

4�0 ln(µLb0) ln ‹H

‹ú
L

<
. (2.36)

This can be done with the scale choice:

‹ú
L = ‹L(µLb0)≠1+p (2.37)

The value of p that allows us to obtain the double log terms in Eq. (2.35) is determined by
comparing them with the exponent in Eq. (2.36):

ln V NLL
S (‹H , ‹ú

L; µL) = “S(0)
‹ ln

A
‹H

‹ú
L

B

= ≠4�0
–s

4fi
ln(µLb0)

5
ln

3
‹H

‹L

4
+ (1 ≠ p) ln(µLb0)

6
(2.38)

By comparing above equation to Eq. (2.35) we find

p = 1
2

5
1 ≠ –s—0

2fi
ln

3
‹H

‹L

46
(2.39)

This ensures that we have now resummed all the terms of the form –s ln2(µLb0). (We assume
one did not choose the default ‹L scale with nontrivial b dependence.) Since �0 > 0, the
double log now provides the necessary stability to the exponential kernel in b space (at both
large and small values of b). With this term in place, we can now talk of a systematic power
counting for the fixed order logs, which, hitherto, was not meaningful.

So we now adopt the usual power counting that ln(µLb0) ≥ 1, i.e., this log is small.
We still need to confirm numerically, that the fixed order logs that remain (O(–s ln(µLb0)),
O(–2

s ln3(µLb0)), O(–2
s ln2(µLb0)), etc.), when integrated against our exponent in b space, are

actually small so that our series is well behaved perturbatively. With this power counting in
place, our result for the resummation at NLL then looks like

d‡

dq2
T

dy
= ‡0

2 UNLL(µH , µT , µL)
⁄

db bJ0(bqT ) V NLL(‹H , ‹ú
L; µL)f(x1, µL)f(x2, µL) (2.40)

At NLL, all fixed order logs are subleading and hence not included.
We will find below that not only does the quadratic ln2 µLb0 term in the exponent of the

b integrand in Eq. (2.40) introduced by the scale choice Eq. (2.37) make the integral converge
for both small and large b, it actually makes it integrable analytically (after a very good
numerical approximation for the Bessel function). We will describe this in detail in Sec. 3.
First, we explore how to generalize the above-described procedure beyond NLL.

2.3.3 NNLL and beyond

At NNLL and higher order, we have some freedom in choosing how to update the accuracy
of the rapidity evolution kernel in Eq. (2.26). A simple, standard, choice would simply be to

– 23 –

At NNLL we would keep the second term of order –s in the bracket, and at N3LL two more
terms of order –2

s would be included, etc. This is not insensible, as the rapidity kernel in
Eq. (2.26) contains only a single large log (ln ‹H/‹L) multiplying the whole ‹-anomalous
dimension. Thus, while the NLL terms are all order –s ◊ 1/–s ≥ 1 in log counting and
should be exponentiated, the NNLL O(–2

s) part of the ‹-anomalous dimension and higher-
order terms are all truly suppressed by additional powers of –s. This is in contrast to the
µ evolution kernels, e.g. Eqs. (A.7a) and (A.8a), where there are infinite towers of terms of
the same order in log counting, because terms at higher powers in –s are multiplied by large
logs of µ/µ0. This is not the case in Eq. (2.27), since higher order terms in –s generated
by µ running do not come with large logs—we are doing the rapidity evolution at a scale
µL ≥ 1/b0, generating only small logs of µLb0. All the e�ects of µ running between widely
separated scales and their associated large logs are contained in U in Eq. (2.26).

However, we do not need to be so draconian in truncating the terms we could resum
using the RRG kernel in Eq. (2.26). The terms in Eq. (2.42) that we either exponentiate or
truncate at fixed order are basically the same order as terms in the fixed-order expansion of
the soft function ÂS(b, µL, ‹ú

L
) given by Eqs. (A.24) and (A.28) that are kept at each order of

logarithmic accuracy, so there is a freedom in choosing which terms in the rapidity anomalous
dimension Eq. (2.27) and the soft function Eq. (A.24) we will exponentiate or leave in a fixed-
order expansion, to obtain desirable behavior of the b-space integrand in Eq. (1.6).

Let us then use this freedom to divide the terms in the rapidity anomalous dimension
Eq. (2.27) into two parts, those that we will exponentiate and those that we will expand out in
fixed order. Namely, we will exponentiate all the pure �n and “n

RS
anomalous dimension terms;

these are at most single logarithmic in µLb0, and the shift from ‹L to ‹ú
L

introduces the double
logs 1

2ZS�n ln2 µLb0 in the fixed-order soft function ÂS associated with �n, see Eq. (A.28); as
well as (part of) the ≥ ZS�n—0 ln2 µLb0 term in the rapidity anomalous dimension Eq. (2.27),
which stabilize the b-space integrand. The remaining terms will be expanded out in –s, and
these are all associated with all the beta function terms coming from –s running of the “pure”
�n and “n

RS
terms. Concretely, we split the rapidity evolution kernel in Eq. (2.26) into:

V (‹L, ‹H ; µL) = V�(‹L, ‹H ; µL)V—(‹L, ‹H ; µL) , (2.43)

where
V�(‹L, ‹H ; µL) = exp

;
ln ‹H

‹L

Œÿ

n=0

1–s(µL)
4fi

2n+1
(ZS�n ln µLb0 + “n

RS)
<

, (2.44)

which remains exponentiated and contains all the “pure” anomalous dimension terms, and

V—(‹L, ‹H ; µL) = 1 +
1–s(µL)

4fi

221
ZS�0—0 ln2 µLb0 + 2“0

RS—0 ln µLb0
2

ln ‹H

‹L

+ · · · , (2.45)

which is the fixed-order expansion of the part of the rapidity evolution kernel Eq. (2.26)
coming from all the remaining (—n) terms in Eq. (2.27) that are not included in Eq. (2.44).
This division Eq. (2.43) ensures that the exponentiated part of the rapidity evolution kernel
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choose to truncate at fixed order. As we will show in Sec. 3, the exponentiated part of the
rapidity evolution kernel V� in Eq. (2.44), with the scale choice ‹ú

L
in Eq. (1.14), can be

written in the form of a pure Gaussian in ln b,

V� = Ce≠A ln2(µLb0‰) , (1.21)

where C, A, ‰ are functions of the scales µL, ‹L, ‹H and the rapidity anomalous dimension,
given explicitly in Eq. (3.6). In particular A ≥ �[–s(µL)]. If we could figure out how to
integrate this Gaussian against the Bessel function in Eq. (3.2), we would be done. Now, the
presence of terms in ÂF in Eq. (3.2) with nonzero powers of ln µLb0 can be obtained from the
basic result by di�erentiation, as we will derive in Sec. 3.3, so we really only need to figure
out how to evaluate the basic integral,

I0
b =

⁄ Œ

0
db bJ0(bqT ) e≠A ln2(�b) , (1.22)

where � © µLe“E ‰/2.
Now, our mathematical achievements in this paper do not reach so far as to evaluate

Eq. (1.22) analytically in its precise form. We will, however, develop a procedure to evaluate
it in a closed form, with analytic dependence on qT , A, � (and thus all scales and anomalous
dimensions), to arbitrary numerical accuracy determined by the goodness of an approximation
we use for the Bessel function. We find a basis in which to expand the pure Bessel function,
in which just a few terms are su�cient to reach a precision better than needed for NNLL
accuracy in the resummed cross section, and which can be systematically improved as needed.
The details of this derivation are in Sec. 3, but we summarize the key steps here.

The first step is to use a Mellin-Barnes representation for the Bessel function,

J0(z) = 1
2fii

⁄
c+iŒ

c≠iŒ
dt

�[≠t]
�[1 + t]

31
2z

42t

, (1.23)

where the contour lies to the left the poles of the gamma function �(≠t), so c < 0. The choice
c = ≠1 turns out to be well behaved, and useful as it is closely related to the fixed-order limit
of Eq. (1.27). This trades the b integral in Eq. (1.22) for the t integral, and we obtain

I0
b = ≠ 2

fiq2
T

e≠AL
2

Ô
fiA

⁄ Œ

≠Œ
dx �(≠c ≠ ix)2 sin[fi(c + ix)]e≠ 1

2 [x≠i(c≠t0)]2 , (1.24)

where we parametrized the contour in Eq. (1.23) as t = c + ix, and where t0 = ≠1 + AL,
where L = ln(2�/qT ). We also used the reflection formula �(≠t)�(1 + t) = ≠fi csc(fit).

It may appear that we are no farther along than when we started with Eq. (1.22)—we
still have to do the x integral. However, we now observe that thanks to the form of the
Gaussian with a width ≥

Ô
A, which vanishes in the limit –s æ 0, we only need to know the

rest of the integrand, in particular

f(t) © �(≠c ≠ ix)2 , (1.25)
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Figure 11. b integrand for di�erent invariant masses, in b space resummation scheme Eq. (2.29)
versus in p space resummation scheme Eq. (3.2). The Landau pole in the b space integrand signals the
onset of nonperturbative physics. The p space integrand in our scheme vanishes smoothly for large b,
although this does not mean nonperturbative e�ects are not important for small qT .

not possible to give a prediction for the cross section. However, once again the nature of the
resummed perturbative exponent comes to the rescue. Even before we reach a nonperturbative
value, the double logarithmic term in b in the exponent completely damps out the integrand.
Then the nonperturbative corrections become irrelevant since the region of b space in which
they start contributing is heavily suppressed.

If we consider b space resummation, the damping which is provided by the resummed
exponent depends mainly on the hard scale Q and the cusp anomalous dimension. For
the Higgs, Q is fixed and the cusp anomalous dimension is large so the damping is always
large. Increasing the center-of-mass energy only changes the x value where the PDFs are
evaluated, but there is only a mild dependence on this factor. So, we can safely neglect any
nonperturbative e�ects and rely completely on the perturbatively resummed cross section.

For the case of DY, the cusp anomalous dimension is much smaller and the value of Q

is variable. So if we go to low Q, nonperturbative e�ects become important, see Fig. 11. As
can be seen from this figure, b ≥ 3 GeV≠1 is a rough estimate of the value beyond which
nonperturbative e�ects become important where we begin observing the divergence due to
the Landau pole in the b space resummation scheme. For low values of Q, several di�erent
ways of incorporating nonperturbative e�ects using model functions (which e�ectively cut o�
the Landau pole) in b space resummation have been proposed [29–33] . In this paper, we
stick to showing results for larger values of Q where these e�ects are not as important. A
detailed discussion of how to handle nonperturbative e�ects in our hybrid impact parameter-
momentum space resummation scheme will be given in future work. We suspect6, among
other things, that the nature of our asymptotic V— expansion in Eqs. (2.44) and (2.54) will
in fact give clues about the best way to include nonperturbative e�ects together with our

6
Thanks to D. Neill
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where the we have isolated the terms in the b integral,

Ib(qT , x1,2, Q; µL, ‹ú
L, ‹H) ©

⁄ Œ

0
db bJ0(bqT ) ÂF (b, x1,2, Q; µL, ‹ú

L, ‹H)V�(‹ú
L, ‹H ; µL) , (3.2)

grouping together the terms in the integrand that are to be expanded in fixed order in –s(µL),
ÂF (b, x1,2, Q; µL, ‹ú

L, ‹H) © (2fi)3 ÂS(b, µL, ‹ú
L) Âf‹

1 (b, x1, p≠, µL, ‹H) Âf‹
2 (b, x2, p+, µL, ‹H)

◊ V—(‹ú
L, ‹H ; µL) , (3.3)

separating them from the exponentiated V� factor. The V� factor is explicitly to all orders in
–s, plugging in Eq. (2.36) for ‹ú

L
in Eq. (2.56),

V�(‹ú
L, ‹H ; µL) = exp

;5
ln‹H

‹L

+
11

2 + –s(µL)—0
4fi

ln ‹H

‹L

2
ln µLb0

6
(3.4)

◊
1
Zs�[–s(µL)]ln µLb0+“RS [–s(µL)]

2<
,

which can always be written in the form

V� = Ce≠A ln2(�b) (3.5)

where C, A, and � are independent of b and thus constants as far as the integral Ib in Eq. (3.2)
is concerned. Explicitly,

A(µL, ‹L, ‹H) = ≠ZS�[–s(µL)](1 ≠ p) = ≠ZS�[–s(µL)]
31

2 + –s(µL)—0
4fi

ln ‹H

‹L

4
(3.6)

� © µLe“E

2 ‰ , ‰(µL, ‹L, ‹H) = exp
I

ln ‹H/‹L

1 + –s(µL)—0
2fi

ln ‹H/‹L

+ “RS [–s(µL)]
2ZS�[–s(µL)]

J

C(µL, ‹L, ‹H) = exp
;

A ln2 ‰ + “RS [–s(µL)] ln ‹H

‹L

<

These show all the dependence on the scales and on the anomalous dimensions contained in
V�. They are to be truncated to the order in resummed accuracy we intend to work (which
we show at NLL and NNLL in App. A in Eqs. (A.38) and (A.39)).

Thus we now just have to figure out how to integrate the Gaussian V� in ln b in Eq. (3.5)
against the Bessel function in the integral Ib in Eq. (3.2). We will encounter integrals of the
form

Ik

b ©
⁄ Œ

0
db bJ0(bqT ) lnk(µLb0)e≠A ln2 �b , (3.7)

where the factors lnk(µLb0) come from the fixed-order factor ÂF in Eq. (3.3). We will first
focus on the case where ÂF = 1 (e.g. at NLL) and compute I0

b
, and then discuss below how

to generate the terms Ik>0
b

resulting from integrating the fixed-order terms containing logs of
µLb0 against the rest of the integrand.

In the next two subsections we shall develop a method to evaluate I0
b

semi-analytically—
with a numerical series expansion for the Bessel function but deriving the analytic dependence
of Eq. (3.7) on all relevant physical parameters including qT . Then in Sec. 3.3 we shall show
how to obtain arbitrary Ik

b
from derivatives on I0

b
.

– 32 –



q  Essential integral in b-space 

q done after numerical integration over b! 
but a rapid oscillation with b and slow 
convergence. 

q Can we do it analytically? 
With Mellin-Barnes rep. 
b integral becomes  
t=c+ix integral. 

Back to p-space 

9 

choose to truncate at fixed order. As we will show in Sec. 3, the exponentiated part of the
rapidity evolution kernel V� in Eq. (2.44), with the scale choice ‹ú

L
in Eq. (1.14), can be

written in the form of a pure Gaussian in ln b,

V� = Ce≠A ln2(µLb0‰) , (1.21)

where C, A, ‰ are functions of the scales µL, ‹L, ‹H and the rapidity anomalous dimension,
given explicitly in Eq. (3.6). In particular A ≥ �[–s(µL)]. If we could figure out how to
integrate this Gaussian against the Bessel function in Eq. (3.2), we would be done. Now, the
presence of terms in ÂF in Eq. (3.2) with nonzero powers of ln µLb0 can be obtained from the
basic result by di�erentiation, as we will derive in Sec. 3.3, so we really only need to figure
out how to evaluate the basic integral,

I0
b =

⁄ Œ

0
db bJ0(bqT ) e≠A ln2(�b) , (1.22)

where � © µLe“E ‰/2.
Now, our mathematical achievements in this paper do not reach so far as to evaluate

Eq. (1.22) analytically in its precise form. We will, however, develop a procedure to evaluate
it in a closed form, with analytic dependence on qT , A, � (and thus all scales and anomalous
dimensions), to arbitrary numerical accuracy determined by the goodness of an approximation
we use for the Bessel function. We find a basis in which to expand the pure Bessel function,
in which just a few terms are su�cient to reach a precision better than needed for NNLL
accuracy in the resummed cross section, and which can be systematically improved as needed.
The details of this derivation are in Sec. 3, but we summarize the key steps here.

The first step is to use a Mellin-Barnes representation for the Bessel function,

J0(z) = 1
2fii

⁄
c+iŒ

c≠iŒ
dt

�[≠t]
�[1 + t]

31
2z

42t

, (1.23)

where the contour lies to the left the poles of the gamma function �(≠t), so c < 0. The choice
c = ≠1 turns out to be well behaved, and useful as it is closely related to the fixed-order limit
of Eq. (1.27). This trades the b integral in Eq. (1.22) for the t integral, and we obtain

I0
b = ≠ 2

fiq2
T

e≠AL
2

Ô
fiA

⁄ Œ

≠Œ
dx �(≠c ≠ ix)2 sin[fi(c + ix)]e≠ 1

2 [x≠i(c≠t0)]2 , (1.24)

where we parametrized the contour in Eq. (1.23) as t = c + ix, and where t0 = ≠1 + AL,
where L = ln(2�/qT ). We also used the reflection formula �(≠t)�(1 + t) = ≠fi csc(fit).

It may appear that we are no farther along than when we started with Eq. (1.22)—we
still have to do the x integral. However, we now observe that thanks to the form of the
Gaussian with a width ≥

Ô
A, which vanishes in the limit –s æ 0, we only need to know the

rest of the integrand, in particular

f(t) © �(≠c ≠ ix)2 , (1.25)
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3.2 Expansion in Hermite polynomials

One of the di�culties with finding a series expansion of f(t) in Eq. (3.13) is that it grows
exponentially for large |x|, with t = c + ix. We can factor out this exponential growth by
using Euler’s reflection formula:

�(z)�(1 ≠ z) = fi

sin(fiz) . (3.14)

Then
f(t) = ≠sin(fit)

fi
�(≠t)2 . (3.15)

The exponential behavior for large |x| is now factored out in the sine function in front, and
we can focus on finding a good expansion for �(≠t)2. The integral Eq. (3.12) is then:

I0
b = ≠ 2

q2
T

e≠AL
2

Ô
fiA

⁄ Œ

≠Œ
dx �(≠c ≠ ix)2 sin[fi(c + ix)]

fi
e≠ 1

A
[x≠i(c≠t0)]2 . (3.16)

The sine can be written in terms of exponentials, which shift the linear and constant terms
in the Gaussian exponential. It is straightforward to work out that the result is

I0
b = 1

ifiq2
T

Ô
fiA

⁄ Œ

≠Œ
dx �(≠c ≠ ix)2

;
e≠A(L≠ifi/2)2

e≠ 1
A

#
x+ Afi

2 ≠i(c≠t0)
$2

(3.17)

≠ e≠A(L+ifi/2)2
e≠ 1

A

#
x≠ Afi

2 ≠i(c≠t0)
$2<

.

By changing variables in the second line from x æ ≠x, we can write the result compactly as

I0
b = 2

fiq2
T

Ô
fiA

Im
;

e≠A(L≠ifi/2)2
⁄ Œ

≠Œ
dx �(≠c ≠ ix)2e≠ 1

A

#
x+ Afi

2 ≠i(c≠t0)
$2<

. (3.18)

The remaining function �(≠t)2 is exponentially damped for large x. Indeed, Stirling’s
formula tells us that

|�(≠c ≠ ix)|2 æ 2fie≠fi|x| |x|≠1≠2c (3.19)

as |x| æ Œ. The contribution of this exponential tail is further suppressed by the Gaussian
factor it multiplies in Eq. (3.18). On the other hand, near x = 0, the function �(≠t)2 itself
closely resembles a Gaussian, times polynomials. To determine the curvature of the Gaussian,
we look at the Taylor series expansion of �(≠t)2 near x = 0:

�(≠c ≠ ix)2 = �(≠c)2
Ë
(1 ≠ a0 x2) ≠ 2iÂ(0)(≠c) x(1 ≠ b0 x2)

È
+ · · · , (3.20)

a0 = 2Â(0)(≠c)2 + Â(1)(≠c) ,

b0 = 2
3Â(0)(≠c)2 + Â(1)(≠c) + 1

6Â(2)(≠c)/Â(0)(≠c) .

It now remains to find a good series expansion for �(≠c ≠ ix)2 that enables us to perform
the integral in Eq. (3.18) analytically and accurately. As noted in Eq. (3.19), �(≠c ≠ ix)2
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where the we have isolated the terms in the b integral,

Ib(qT , x1,2, Q; µL, ‹ú
L, ‹H) ©

⁄ Œ

0
db bJ0(bqT ) ÂF (b, x1,2, Q; µL, ‹ú

L, ‹H)V�(‹ú
L, ‹H ; µL) , (3.2)

grouping together the terms in the integrand that are to be expanded in fixed order in –s(µL),
ÂF (b, x1,2, Q; µL, ‹ú

L, ‹H) © (2fi)3 ÂS(b, µL, ‹ú
L) Âf‹

1 (b, x1, p≠, µL, ‹H) Âf‹
2 (b, x2, p+, µL, ‹H)

◊ V—(‹ú
L, ‹H ; µL) , (3.3)

separating them from the exponentiated V� factor. The V� factor is explicitly to all orders in
–s, plugging in Eq. (2.36) for ‹ú

L
in Eq. (2.56),

V�(‹ú
L, ‹H ; µL) = exp

;5
ln‹H

‹L

+
11

2 + –s(µL)—0
4fi

ln ‹H

‹L

2
ln µLb0

6
(3.4)

◊
1
Zs�[–s(µL)]ln µLb0+“RS [–s(µL)]

2<
,

which can always be written in the form

V� = Ce≠A ln2(�b) (3.5)

where C, A, and � are independent of b and thus constants as far as the integral Ib in Eq. (3.2)
is concerned. Explicitly,

A(µL, ‹L, ‹H) = ≠ZS�[–s(µL)](1 ≠ p) = ≠ZS�[–s(µL)]
31

2 + –s(µL)—0
4fi

ln ‹H

‹L

4
(3.6)

� © µLe“E

2 ‰ , ‰(µL, ‹L, ‹H) = exp
I

ln ‹H/‹L

1 + –s(µL)—0
2fi

ln ‹H/‹L

+ “RS [–s(µL)]
2ZS�[–s(µL)]

J

C(µL, ‹L, ‹H) = exp
;

A ln2 ‰ + “RS [–s(µL)] ln ‹H

‹L

<

These show all the dependence on the scales and on the anomalous dimensions contained in
V�. They are to be truncated to the order in resummed accuracy we intend to work (which
we show at NLL and NNLL in App. A in Eqs. (A.38) and (A.39)).

Thus we now just have to figure out how to integrate the Gaussian V� in ln b in Eq. (3.5)
against the Bessel function in the integral Ib in Eq. (3.2). We will encounter integrals of the
form

Ik

b ©
⁄ Œ

0
db bJ0(bqT ) lnk(µLb0)e≠A ln2 �b , (3.7)

where the factors lnk(µLb0) come from the fixed-order factor ÂF in Eq. (3.3). We will first
focus on the case where ÂF = 1 (e.g. at NLL) and compute I0

b
, and then discuss below how

to generate the terms Ik>0
b

resulting from integrating the fixed-order terms containing logs of
µLb0 against the rest of the integrand.

In the next two subsections we shall develop a method to evaluate I0
b

semi-analytically—
with a numerical series expansion for the Bessel function but deriving the analytic dependence
of Eq. (3.7) on all relevant physical parameters including qT . Then in Sec. 3.3 we shall show
how to obtain arbitrary Ik

b
from derivatives on I0

b
.
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in a fairly small region of x. In fact we shall not need it out to more than |x| ≥ 1.5 for any
of our applications. Thus if we can find a good basis in which to expand f where every term
gives an analytically evaluable integral in Eq. (1.24), we shall be in good shape.

Now, this would not have been a good strategy in Eq. (1.27) for the Bessel function itself,
as it is highly oscillatory out to fairly large b, and the Gaussian does not damp the integrand
away quickly—its width only grows as –s (i.e. A) goes to zero. However, inside Eq. (1.24),
we find an expansion of f (Eq. (1.25)) in terms of Hermite polynomials Hn to work very well:

�(1 ≠ ix)2 = e≠a0x
2

Œÿ

n=0
c2nH2n(–x) + i“E

—
e≠b0x

2
Œÿ

n=0
c2n+1H2n+1(—x) , (1.26)

where we now pick c = ≠1 and factor out Gaussians with widths set by a0, b0 which closely
(but not exactly) resemble the real and imaginary parts of �(1 ≠ ix)2 itself, near x = 0.
Their departures from an exact Gaussian are accounted for by the remaining series of Hermite
polynomials. It would be natural to choose the scaling factors –, — for the Hermite polynomials
to be –2 = a0 and —2 = b0, but instead we leave them free, to be determined empirically
to optimize fast convergence of the series. We find we can get su�cient numerical accuracy
acceptable for NNLL accuracy in the final cross section with only three terms in each series,
real and imaginary. The coe�cients cn in Eq. (1.26) still have to be determined by the
numerical integrals Eq. (3.25), which unfortunately prevents us from having a fully analytic
result for the momentum-space cross section. However, the series Eq. (1.26) with these
numerical coe�cients depends only on properties of the pure mathematical function �(1≠ix)2

itself—not on any physical parameters. The dependence on these we keep analytically. All
that is left is to evaluate analytically the integral of each Hermite polynomial against the
Gaussian in Eq. (1.24), leading to the result we derive in Eq. (3.37),

I0
b = 2

fiq2
T

Œÿ

n=0
Im

;
c2nH2n(–, a0) + i“E

—
c2n+1H2n+1(—, b0)

<
, (1.27)

where each term Hn is defined by the integral,

Hn(–, a0) = 1Ô
fiA

e≠A(L≠ifi/2)2
⁄ Œ

≠Œ
dx Hn(–x)e≠a0x

2≠ 1
A

(x+z0)2
, (1.28)

each of which has the closed form result,

Hn(–, a0) = (≠1)nn! e
≠A(L≠ifi/2)2

1+a0A

(1 + a0A)n+ 1
2

Ân/2Êÿ

m=0

1
m!

1
(n ≠ 2m)!

Ó
[A(–2 ≠a0)≠1](1+a0A)

Ôm

(2–z0)n≠2m ,

(1.29)
the first several of which are written out explicitly in Eq. (E.14). In Eqs. (1.28) and (1.29),
z0 = A(fi/2 + iL), in terms of which the integral Eq. (1.24) can be written, the shifted
exponents arising from absorbing the sine function in Eq. (1.24).

The results Eq. (1.29) for the integrals Eq. (1.28) are the primary mathematical result of
our paper. The final and primary physics result of our paper, Eq. (3.64), the resummed cross
section in momentum space, is given in terms of the analytic result Eq. (1.27) for I0

b
above.
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These integrals still have to computed numerically, as far as we know, but note they are purely
mathematical, having no dependence on any of our physical parameters, and need only be
computed once. Thanks to the damped behavior of the integrand and the normalization
factors in front, the expansion coe�cients fall o� fairly rapidly with n.

To make the series expansion well behaved, the width parameter of Gaussian functions
should be positive definite: –2 ≠ a0 > 0 and —2 ≠ b0 > 0. These widths define the region of x

where the function �(1≠ ix)2 is expanded in terms of the Hermite bases. For a narrow width,
the series converges swiftly with n but is valid only in a narrow region around x = 0, while for
broader width, the convergence is slower but the expansion is valid in a wider region around
x. The Gaussian function in our integration in Eq. (3.18) resolves the region |x ≠ Afi

2 | ≥
Ô

A

and for the maximal value we encounter, A ≥ 0.5, the broadest region is up to |x| ≥ 1.5.
The parameters –, — should be chosen so that the Gaussians in Eq. (3.25) roughly match the
width of this region and resemble �(1 ≠ ix)2 itself as closely as possible. We explored various
values of these parameters such that the exponents –2 ≠ a0 and —2 ≠ b0 were between 1 and
10 and found that for small values ≥ 1 the convergence is slow and hence more terms are
needed for an accurate description. For large values ≥ 10 the accuracy of the integration in
Eq. (3.18) is very good with a few basis terms but is not further improved by including higher
order terms because the series expansion is resolving only a narrow x region compared to the
one dictated by Eq. (3.18). Empirical tests show that the series converges rapidly for –2 ≠ a0
and —2 ≠ b0 around 3 ≥ 5 while maintaining required accuracy over the range of x (from 0 to
±1.5) desired. Fig. 7 shows the agreement between the exact result and series expansion up
to 3 or 4 basis terms for the real (even) and imaginary (odd) parts, for:

–2 ≠ a0 = 4 and —2 ≠ b0 = 4 . (3.26)

The coe�cients cn for these choices of –, — are given by

c0 = 1.02248 , c2 = 0.02254 , c4 = 0.00206 , c6 = 3.42 ◊ 10≠5 (3.27)
c1 = 1.06808 , c3 = 0.02173 , c5 = 0.00103 , c7 = 3.21 ◊ 10≠6

which indeed show a rapid convergence. In practice we include up to c6 in our numerical
results; from c7 onwards the impact is negligible.

From staring at Fig. 7, one notices a residual deviation in the real part above x ≥ 1,
which thus appears to be the potentially largest source of error from our method. However,
the region of larger x in Fig. 7 is suppressed by the remaining Gaussian in Eq. (3.18). The
remaining deviation can easily be further suppressed if desired by including higher-order
polynomials. In practice, at NNLL accuracy the cross section has ≥ 10% uncertainties,
and the error due to our series truncation at n = 5 or 6 is significantly smaller than this
perturbative uncertainty. This is clearly seen in Fig. 8, which shows the e�ect of increasing
the total number of terms in the Hermite expansion from 6 to 7.
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Figure 7. Real and imaginary parts of �(1 ≠ ix)2 compared to series expansion in terms of Hermite
polynomials up to 6th (5th) order for the real (imaginary) parts, i.e. four terms for the real part and
three for the imaginary part.

In terms of this expansion, the integration in Eq. (3.18) is rewritten in terms of following
basis of integrals

Hn(–, a0) = 1Ô
fiA

e≠A(L≠ifi/2)2
⁄ Œ

≠Œ
dx Hn(–x)e≠a0x

2≠ 1
A

(x+z0)2
, (3.28)

where z0 = Afi/2 ≠ i(c ≠ t0). For c = ≠1, z0 = A(fi/2 + iL). The integrals for odd n

arising from the expansion in Eq. (3.23) are obtained from Eq. (3.28) with the substitutions
– æ —, a0 æ b0. The prefactors in front have been included in the definition of Hn for later
convenience.

Now we go about evaluating analytically the integrals in Eq. (3.28). There are a number
of ways to do this, we choose one that seems particularly elegant.

3.2.1 Generating function method to integrate against Hermite polynomials

Using the generating function for Hermite polynomials,

e2xt≠t
2 =

Œÿ

n=0

tn

n!Hn(x) , (3.29)

we can e�ciently evaluate all the integrals Hn in Eq. (3.28) at the same time. By forming
the infinite series,

H ©
Œÿ

n=0

tn

n!Hn(–, a0) = e≠A(L≠ifi/2)2

Ô
fiA

⁄ Œ

≠Œ
dx e2–xt≠t

2
e≠a0x

2≠ 1
A

(x+z0)2
, (3.30)

we are able to use the generating function relation Eq. (3.29) to obtain a Gaussian integral
on the RHS. By evaluating the integral on the RHS and expanding the result back out in
powers of tn, we will be able to obtain expressions for the individual Hn.
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dies exponentially for large x, and the remaining Gaussian in Eq. (3.18) dies even faster. For
c = ≠1, both �(≠c≠ix)2 and the Gaussian are significantly nonzero only up to about |x| ≥ 2.
For practical purpose of series expansion, we set c = ≠1 which makes the gamma function
less oscillatory than the values |c| < 1.

This is the saddle point in the limit A æ 0, i.e., when we are in the fixed order regime
with the resummation turned o�. This would still induce some imaginary part and hence
oscillations in the exponent away from A = 0, but with a good expansion, this is not an issue.
Thus one can try a series expansion for �(1 ≠ ix)2 in terms of Hermite polynomials Hn(x)
which form a complete orthogonal basis. They are well known, of course, but we nevertheless
remind ourselves of the first several Hn:

H0(x) = 1 H1(x) = 2x (3.21)
H2(x) = 4x2 ≠ 2 H3(x) = 8x3 ≠ 12x

H4(x) = 16x4 ≠ 48x2 + 12 H5(x) = 32x5 ≠ 160x3 + 120x

H6(x) = 64x6 ≠ 480x4 + 720x2 ≠ 120 H7(x) = 128x7 ≠ 1344x5 + 3360x3 ≠ 1680x ,

etc. They satisfy the orthogonality relation
⁄ Œ

≠Œ
dx e≠–

2
x

2
Hm(–x)Hn(–x) = –≠1Ô

fi 2nn!”nm . (3.22)

We expand �(1 ≠ ix)2 in terms of these polynomials in the following way:

�(1 ≠ ix)2 = e≠a0x
2

Œÿ

n=0
c2nH2n(–x) + i“E

—
e≠b0x

2
Œÿ

n=0
c2n+1H2n+1(—x) , (3.23)

We have introduced weighting factors e≠a0x
2 and i“Ee≠b0x

2 for the real and imaginary parts
to help with faster convergence of the series, as they capture the behavior of �(1 ≠ ix)2 near
x = 0, using the values of a0 and b0 obtained from the Taylor series expansion in Eq. (3.20)
at c = ≠1:

a0 = 2“2
E + fi2

6 ¥ 2.31129 , b0 = 2
3“2

E + ’3
3“E

+ fi2

6 ¥ 2.56122 . (3.24)

Note that the real and imaginary parts of the LHS of Eq. (3.23) are respectively even and
odd functions of x. Hence on the RHS, we need even polynomials for the real part and odd
polynomials for imaginary part. Although the relation Eq. (3.22) would make it seem natural
to pick –2 = a0 and —2 = b0 in the arguments of Hn in the expansionEq. (3.23), we choose
–, — to be floating, and will determine their optimal values to ensure the fastest convergence
for this expansion.

Using Eq. (3.22), the coe�cients in Eq. (3.23) are given by

c2n = –Ô
fi 22n(2n)!

⁄ Œ

≠Œ
dx Re{�(1 ≠ ix)2}H2n(–x)e≠(–2≠a0)x2

, (3.25)

c2n+1 = —2

“E

Ô
fi 22n+1(2n + 1)!

⁄ Œ

≠Œ
dx Im{�(1 ≠ ix)2}H2n+1(—x)e≠(—2≠b0)x2

.
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less oscillatory than the values |c| < 1.

This is the saddle point in the limit A æ 0, i.e., when we are in the fixed order regime
with the resummation turned o�. This would still induce some imaginary part and hence
oscillations in the exponent away from A = 0, but with a good expansion, this is not an issue.
Thus one can try a series expansion for �(1 ≠ ix)2 in terms of Hermite polynomials Hn(x)
which form a complete orthogonal basis. They are well known, of course, but we nevertheless
remind ourselves of the first several Hn:

H0(x) = 1 H1(x) = 2x (3.21)
H2(x) = 4x2 ≠ 2 H3(x) = 8x3 ≠ 12x

H4(x) = 16x4 ≠ 48x2 + 12 H5(x) = 32x5 ≠ 160x3 + 120x

H6(x) = 64x6 ≠ 480x4 + 720x2 ≠ 120 H7(x) = 128x7 ≠ 1344x5 + 3360x3 ≠ 1680x ,

etc. They satisfy the orthogonality relation
⁄ Œ

≠Œ
dx e≠–

2
x

2
Hm(–x)Hn(–x) = –≠1Ô

fi 2nn!”nm . (3.22)

We expand �(1 ≠ ix)2 in terms of these polynomials in the following way:

�(1 ≠ ix)2 = e≠a0x
2

Œÿ

n=0
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We have introduced weighting factors e≠a0x
2 and i“Ee≠b0x

2 for the real and imaginary parts
to help with faster convergence of the series, as they capture the behavior of �(1 ≠ ix)2 near
x = 0, using the values of a0 and b0 obtained from the Taylor series expansion in Eq. (3.20)
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Note that the real and imaginary parts of the LHS of Eq. (3.23) are respectively even and
odd functions of x. Hence on the RHS, we need even polynomials for the real part and odd
polynomials for imaginary part. Although the relation Eq. (3.22) would make it seem natural
to pick –2 = a0 and —2 = b0 in the arguments of Hn in the expansionEq. (3.23), we choose
–, — to be floating, and will determine their optimal values to ensure the fastest convergence
for this expansion.

Using Eq. (3.22), the coe�cients in Eq. (3.23) are given by

c2n = –Ô
fi 22n(2n)!

⁄ Œ

≠Œ
dx Re{�(1 ≠ ix)2}H2n(–x)e≠(–2≠a0)x2

, (3.25)

c2n+1 = —2

“E

Ô
fi 22n+1(2n + 1)!

⁄ Œ

≠Œ
dx Im{�(1 ≠ ix)2}H2n+1(—x)e≠(—2≠b0)x2

.
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Figure 8. Systematic improvement in the accuracy of cross section with increasing number of terms.
Exact (red) gives resummed cross section without Hermite expansion (i.e. numerical b integration).
N = 6 (blue) is the result with six terms in Hermite expansion, 3 each for real and imaginary terms.
N=7(Black) is the result with 7 terms, 4 for real and 3 for imaginary.

Hermite polynomials in Eq. (3.23). For the numerical results in this paper, we used the values

a0 = 2“2
E + fi2

6 ¥ 2.31129 and b0 = 2
3“2

E + ’3
3“E

+ fi2

6 ¥ 2.56122 , (3.66)

which were given in Eq. (3.24), and values of –, — given by

–2 ≠ a0 = 4 and —2 ≠ b0 = 4 , (3.67)

which were given in Eq. (3.26). These choices are by no means unique; other values can
also be chosen. Our choices allowed su�ciently accurate representation of the exact function
�(1 ≠ ix)2 with an economical basis of a few terms each for the real and imaginary parts, the
coe�cients of which we gave in Eq. (3.27).

Table 1 gives the orders to which the anomalous dimensions and fixed-order pieces of
Eq. (3.64) are to be truncated to achieve NLL, NNLL, etc. perturbative accuracy in the
resummed cross section.

It is good to remind ourselves at this point that the final formula Eq. (3.64) is a threefold
expansion as described in Sec. 1.3: a perturbative expansion in –s and resummed logs, an
additional fixed-order expansion of the non-conformal piece V— of the rapidity evolution inside
ÂF , and an expansion in Hermite polynomials in evaluating each Ik

b
. It is thus quintessentially

a “formula” according to a delightful definition we recently encountered: an expression given
by an = sign with a controlled error of known parametric form.6

4 Matching to the fixed order cross section

The resummed formula Eq. (3.64) accurately predicts the spectrum for relatively low (but
not too low) values of qT . At large qT ≥ Q, the non-singular terms in qT become just as big

6
A. Manohar, “The Photon PDF,” talk at Lattice QCD workshop, Santa Fe, NM, Aug. 28–Sep 1, 2017,

describing work in [33, 34].
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Figure 8. Systematic improvement in the accuracy of cross section with increasing number of terms.
Exact (red) gives resummed cross section without Hermite expansion (i.e. numerical b integration).
N = 6 (blue) is the result with six terms in Hermite expansion, 3 each for real and imaginary terms.
N=7(Black) is the result with 7 terms, 4 for real and 3 for imaginary.
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in a fairly small region of x. In fact we shall not need it out to more than |x| ≥ 1.5 for any
of our applications. Thus if we can find a good basis in which to expand f where every term
gives an analytically evaluable integral in Eq. (1.24), we shall be in good shape.

Now, this would not have been a good strategy in Eq. (1.27) for the Bessel function itself,
as it is highly oscillatory out to fairly large b, and the Gaussian does not damp the integrand
away quickly—its width only grows as –s (i.e. A) goes to zero. However, inside Eq. (1.24),
we find an expansion of f (Eq. (1.25)) in terms of Hermite polynomials Hn to work very well:

�(1 ≠ ix)2 = e≠a0x
2

Œÿ

n=0
c2nH2n(–x) + i“E

—
e≠b0x

2
Œÿ

n=0
c2n+1H2n+1(—x) , (1.26)

where we now pick c = ≠1 and factor out Gaussians with widths set by a0, b0 which closely
(but not exactly) resemble the real and imaginary parts of �(1 ≠ ix)2 itself, near x = 0.
Their departures from an exact Gaussian are accounted for by the remaining series of Hermite
polynomials. It would be natural to choose the scaling factors –, — for the Hermite polynomials
to be –2 = a0 and —2 = b0, but instead we leave them free, to be determined empirically
to optimize fast convergence of the series. We find we can get su�cient numerical accuracy
acceptable for NNLL accuracy in the final cross section with only three terms in each series,
real and imaginary. The coe�cients cn in Eq. (1.26) still have to be determined by the
numerical integrals Eq. (3.25), which unfortunately prevents us from having a fully analytic
result for the momentum-space cross section. However, the series Eq. (1.26) with these
numerical coe�cients depends only on properties of the pure mathematical function �(1≠ix)2

itself—not on any physical parameters. The dependence on these we keep analytically. All
that is left is to evaluate analytically the integral of each Hermite polynomial against the
Gaussian in Eq. (1.24), leading to the result we derive in Eq. (3.37),

I0
b = 2

fiq2
T

Œÿ

n=0
Im

;
c2nH2n(–, a0) + i“E

—
c2n+1H2n+1(—, b0)

<
, (1.27)

where each term Hn is defined by the integral,

Hn(–, a0) = 1Ô
fiA

e≠A(L≠ifi/2)2
⁄ Œ

≠Œ
dx Hn(–x)e≠a0x

2≠ 1
A

(x+z0)2
, (1.28)

each of which has the closed form result,

Hn(–, a0) = (≠1)nn! e
≠A(L≠ifi/2)2

1+a0A

(1 + a0A)n+ 1
2

Ân/2Êÿ

m=0

1
m!

1
(n ≠ 2m)!

Ó
[A(–2 ≠a0)≠1](1+a0A)

Ôm

(2–z0)n≠2m ,

(1.29)
the first several of which are written out explicitly in Eq. (E.14). In Eqs. (1.28) and (1.29),
z0 = A(fi/2 + iL), in terms of which the integral Eq. (1.24) can be written, the shifted
exponents arising from absorbing the sine function in Eq. (1.24).

The results Eq. (1.29) for the integrals Eq. (1.28) are the primary mathematical result of
our paper. The final and primary physics result of our paper, Eq. (3.64), the resummed cross
section in momentum space, is given in terms of the analytic result Eq. (1.27) for I0

b
above.

– 10 –

where the second term in F (2)
2 came from the shift ‹L æ ‹ú

L
in the one-loop soft function. So

at NNLL, all pieces of ÂF (2) (i.e. the fixed-order O(–2
s) terms) vanish or can be dropped.

Then, the resummed cross section in momentum space Eq. (3.1), using Eqs. (3.5), (3.7),
and (3.40) to express the integral Ib and the coe�cients ÂF (n)

k
in the expansion of the fixed-

order prefactor ÂF Eq. (3.58) and given explicitly by Eqs. (3.59), (3.60), and (3.63), can be
written:

d‡

dq2
T

dy
= 1

2‡0C2
t (M2

t , µT )H(Q2, µH)U(µL, µH , µT )C(µL, ‹L, ‹H)

◊
Œÿ

n=0

2nÿ

k=0

1–s(µL)
4fi

2n ÂF (n)
k

(x1, x2, Q; µL, ‹L, ‹H)Ik

b (qT ; µL, ‹L, ‹H ; –, a0; —, b0) .

(3.64)
This compact expression still has many pieces to it. We provide a roadmap to where to find
them all:

The basic cross sections ‡0 for Higgs production (gg æ H) and for Drell-Yan (qq̄ æ “ú)

‡Higgs
0 = M2

h

576fiv2s
, ‡DY

0 = (4fi–em(Q))2

3NcQ2s
, (3.65)

The hard function H is given by Eq. (A.18), with the non-cusp anomalous dimensions
for DY given by Eq. (A.10) and for Higgs by Eq. (A.11), and the one-loop constant terms
for DY and Higgs given by Eq. (A.17). C2

t for Higgs production is given by Eq. (A.20) while
it is set to 1 for DY. Note for Higgs production the natural hard scale µH = iQ = iMH .
In the hard function, the µ evolution kernel U and where it appears in the soft function,
TMDPDF, and rapidity evolution factors, the cusp anomalous dimension coe�cients �n for
DY and Higgs are given by Eq. (A.9). The µ (virtuality RG) evolution kernel U(µL, µH , µT )
is given in Eq. (2.26), with the parts of the exponent K�,“ , ÷� defined and expanded up to
NNLL accuracy in App. A.1.

The factor C(µL, ‹L, ‹H), which came from expressing the exponentiated “conformal”
part of the rapidity evolution kernel V� in Eq. (2.57) as a Gaussian in ln b, is defined in
Eq. (3.6), and expanded to NLL and NNLL accuracy in App. A.6.

The coe�cients ÂF (n)
k

coming from the fixed-order terms in the soft function, TMDPDFs,
and “non-conformal” part of the rapidity evolution kernel V— defined in Eq. (2.55) have been
given above in Eqs. (3.59), (3.60), and (3.63) up to the order to which we shall need them for
NNLL accuracy.

The integrals Ik

b
which we defined in Eq. (3.7) are given in final evaluated form in

Eq. (3.40), the calculation of which formed the bulk of this Sec. 3 and is one of the main results
of this paper (along with the scale choices in Sec. 2 that lead to the form of Eq. (3.64) itself).
That result is in terms of derivatives Eq. (3.44) of the integrals Hn of Hermite polynomials
against the Gaussian in Eq. (3.28) appearing in I0

b
in Eq. (3.37), the explicit results for which

are given by Eqs. (3.33) and (E.14). Those integrals depend on the parameters –, a0 and
—, b0 that we used in the expansion of the function �(1 ≠ ix)2 in terms of Gaussian-weighted
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Figure 15. Terms in double sum Eq. (E.9).

Thus,

H = H0

Œÿ

n=0

nÿ

m=Án/2Ë

(≠t)n

(n ≠ m)!(2m ≠ n)!

3 2–z0
1 + a0A

4m3
A–2 ≠ 1 ≠ a0A

2–z0

4n≠m

, (E.11)

Now we can read o� the coe�cient of tn in the series in Eq. (3.30), and obtain

Hn = H0(≠1)nn!
nÿ

m=Án/2Ë

1
(n ≠ m)!(2m ≠ n)!

3 2–z0
1 + a0A

4m3
A–2 ≠ 1 ≠ a0A

2–z0

4n≠m

. (E.12)

For convenience, we reindex the sum over m by taking m æ n ≠ m, and obtain

Hn = H0(≠1)nn!
Ân/2Êÿ

m=0

1
(m)!(n ≠ 2m)!

3 2–z0
1 + a0A

4n≠m3
A–2 ≠ 1 ≠ a0A

2–z0

4m

, (E.13)

which after a rearrangement of factors gives the claimed result Eq. (3.33).
Explicitly, the first several Hn given by Eq. (3.33) are

H0 = e
≠ A

1+a0A
(L≠ifi/2)2 1Ô

1 + a0A
(E.14)

H1 = ≠ 2z0–

1 + a0A
H0

H2 = H0
(1 + a0A)2 [4–2z2

0 + 2(A(–2 ≠ a0) ≠ 1)(1 + a0A)]

H3 = H1
(1 + a0A)2

5
4–2z2

0 + 6(A(–2 ≠ a0) ≠ 1)(1 + a0A)
6

H4 = H0
(1 + a0A)4

5
16–4z4

0 + 48–2z2
0(A(–2≠a0) ≠ 1)(1+a0A) + 12(A(–2≠a0) ≠ 1)2(1+a0A)2

6

H5 = H1
(1 + a0A)4

5
16–4z4

0 + 80–2z2
0(A(–2≠a0) ≠ 1)(1+a0A) + 60(A(–2≠a0) ≠ 1)2(1+a0A)2

6
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Figure 15. Terms in double sum Eq. (E.9).
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For convenience, we reindex the sum over m by taking m æ n ≠ m, and obtain
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which after a rearrangement of factors gives the claimed result Eq. (3.33).
Explicitly, the first several Hn given by Eq. (3.33) are
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(E.14)
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fixed-order functions ÂF defined in Eq. (3.3) that appears in the integral Ib in Eq. (3.2):

ÂF (b, x1, x2, Q; µL, ‹ú
L, ‹H) =

Œÿ

n=0

2nÿ

k=0

1–s(µL)
4fi

2n ÂF (n)
k

lnk µLb0 , (3.58)

which is done in anticipation of using our results for the integrals Ik

b
defined in Eq. (3.7)

and computed in Eq. (3.40). We can build each coe�cient ÂF (n)
k

out of the coe�cients of
the soft function and TMDPDFs in their expansions Eqs. (A.27) and (A.35), reading o� the
coe�cients of each power of ln µLb0. In doing so we must take into account extra powers of
ln µLb0 in the soft function due to the shifted scale ‹ú

L
= ‹L(µLb0)≠1+p in Eq. (2.37) that we

use. Then we have for the terms we need up to NNLL accuracy, at tree level:

ÂF (0)
0 = fi(x1, µL)f

ī
(x2, µL) , (3.59)

where i, ī = g for Higgs production and i = q for Drell-Yan, and at O(–s):

ÂF (1)
2 = fi(x1, µL)f

ī
(x2, µL)ZS

�0
2 (1 ≠ 1) = 0 (3.60a)

ÂF (1)
1 = fi(x1, µL)f

ī
(x2, µL)

3
ZS�0 ln ‹L

µL

+ Zf �0 ln ‹2
H

Q2 + 2“0
f

4
(3.60b)

≠ [2P (0)
ij

¢ fj(x1, µL)]f
ī
(x2, µL) ≠ fi(x1, µL)[2P

īj
¢ fj(x2, µL)]

ÂF (1)
0 = fi(x1, µL)f

ī
(x2, µL)c1

ÂS + [I(1)
ij

¢ fj(x1, µL)]f
ī
(x2, µL) + fi(x1, µL)[I(1)

īj
¢ fj(x2, µL)] .

(3.60c)

Note that ÂF (1)
2 vanishes due to the extra term from the shift ‹L æ ‹ú

L
since the double log term

was promoted from the fixed-order soft function to the exponent in Eq. (2.38), as designed.
Up to NNLL accuracy, the only O(–2

s) terms we need come from the the –2
s piece of the soft

function induced by ‹L æ ‹ú
L

, and the O(–2
s) terms in the V— piece of ÂF in Eq. (3.3), which

from Eq. (2.45) we see has the expansion

V—(‹ú
L, ‹H ; µL) = 1 +

Œÿ

n=2

n+1ÿ

k=1

1–s(µL)
4fi

2n

V (n)
k

lnk µLb0 , (3.61)

where at O(–2
s),

V (2)
3 = ZS�0—0

1
1 ≠ 1

2
2

= 1
2ZS�0—0 (3.62a)

V (2)
2 = ZS�0—0 ln ‹H

‹L

(3.62b)

V (2)
1 = 0 . (3.62c)

The V (2)
3 coe�cient actually just multiplies a small log ln2 µLb0, so strictly at NNLL we can

drop it. Then the only relevant piece of ÂF (2) we would need at NNLL accuracy is

ÂF (2)
2 = fi(x1, µL)f

ī
(x2, µL)

1
V (2)

2 ≠ ZS�0—0 ln ‹H

‹L

2
= 0 , (3.63a)
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given explictly by, for c = ≠1,

I0
b = 2

fiq2
T

Œÿ

n=0
Im

;
c2nH2n(–, a0) + i“E

—
c2n+1H2n+1(—, b0)

<
(3.37)

= 2
fiq2

T

Im
Œÿ

n=0

nÿ

m=0

A

c2nH0(–, a0) (2n)!
(1 + a0A)2n

1
m!(2n ≠ 2m)!

◊
Ó

[A(–2 ≠ a0) ≠ 1](1 + a0A)
Ôm

(2–z0)2n≠2m

+ i“E

—
c2n+1H1(—, b0) (2n + 1)!

(1 + b0A)2n

1
m!(2n ≠ 2m + 1)!

◊
Ó

[A(—2 ≠ b0) ≠ 1](1 + b0A)
Ôm

(2—z0)2n≠2m

4
,

where the coe�cients cn are given by Eq. (3.25). As many terms in the sum over n may
be included to achieve the numerical accuracy desired. In practice, we include the first few
terms in the sum over n (three or four even c2n and three odd c2n+1 coe�cients), which
gives us percent level accuracy for the cross section in the perturbative resummation region.
Although the coe�cients cn still need to be evaluated numerically, we note that they depend
only on properties of the observable- and process-independent function �(1 ≠ ix)2 and need
be determined only once (Eq. (3.27)). All the dependence on the physical variables such
as qT , Q, and the scales µL,H , ‹L,H in the problem (see Eq. (3.6)) is given analytically by
Eq. (3.37).

3.3 Fixed order terms

At NNLL (or NLLÕ) and higher orders, fixed order logarithmic terms of the form lnk(µLb0)
appear in the prefactor multiplying the resummed exponent in the integrand of Eq. (3.2) or
Eq. (3.7). The result of integrating these terms can be readily obtained from the analytic
resummed result for I0

b
Eq. (3.37), by taking derivatives, using:

lnk(µLb0)e≠A ln2(�b) = lnk(µLb0)e≠A ln2(µLb0‰) =
Ë
ˆ̂
‰

È
k

e≠A ln2(µLb0‰) , (3.38)

where we used Eq. (3.6) and we have defined

ˆ̂
‰ = ≠ 1

2A

ˆ

ˆ ln ‰
≠ ln ‰ . (3.39)

Using the final expression Eq. (3.37) for I0
b

we can now write

Ik

b =
Ë
ˆ̂
‰

È
k

I0
b

= 2
fiq2

T

Œÿ

n=0
Im

Ó
c2n

Ë
ˆ̂
‰

È
k

H2n(–, a0) + i“E

—
c2n+1

Ë
ˆ̂
‰

È
k

H2n+1(—, b0)
Ô

(3.40)

In the expression Eq. (3.33) for Hn, the variable ‰ only appears inside of

L = ln
32�

qT

4
= ln µLe“E

qT

+ ln ‰ , (3.41)
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Figure 7. Real and imaginary parts of �(1 ≠ ix)2 compared to series expansion in terms of Hermite
polynomials up to 6th (5th) order for the real (imaginary) parts, i.e. four terms for the real part and
three for the imaginary part.

In terms of this expansion, the integration in Eq. (3.18) is rewritten in terms of following
basis of integrals

Hn(–, a0) = 1Ô
fiA

e≠A(L≠ifi/2)2
⁄ Œ

≠Œ
dx Hn(–x)e≠a0x

2≠ 1
A

(x+z0)2
, (3.28)

where z0 = Afi/2 ≠ i(c ≠ t0). For c = ≠1, z0 = A(fi/2 + iL). The integrals for odd n

arising from the expansion in Eq. (3.23) are obtained from Eq. (3.28) with the substitutions
– æ —, a0 æ b0. The prefactors in front have been included in the definition of Hn for later
convenience.

Now we go about evaluating analytically the integrals in Eq. (3.28). There are a number
of ways to do this, we choose one that seems particularly elegant.

3.2.1 Generating function method to integrate against Hermite polynomials

Using the generating function for Hermite polynomials,

e2xt≠t
2 =

Œÿ

n=0

tn

n!Hn(x) , (3.29)

we can e�ciently evaluate all the integrals Hn in Eq. (3.28) at the same time. By forming
the infinite series,

H ©
Œÿ

n=0

tn

n!Hn(–, a0) = e≠A(L≠ifi/2)2

Ô
fiA

⁄ Œ

≠Œ
dx e2–xt≠t

2
e≠a0x

2≠ 1
A

(x+z0)2
, (3.30)

we are able to use the generating function relation Eq. (3.29) to obtain a Gaussian integral
on the RHS. By evaluating the integral on the RHS and expanding the result back out in
powers of tn, we will be able to obtain expressions for the individual Hn.
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fixed-order functions ÂF defined in Eq. (3.3) that appears in the integral Ib in Eq. (3.2):

ÂF (b, x1, x2, Q; µL, ‹ú
L, ‹H) =

Œÿ

n=0

2nÿ

k=0

1–s(µL)
4fi

2n ÂF (n)
k

lnk µLb0 , (3.58)

which is done in anticipation of using our results for the integrals Ik

b
defined in Eq. (3.7)

and computed in Eq. (3.40). We can build each coe�cient ÂF (n)
k

out of the coe�cients of
the soft function and TMDPDFs in their expansions Eqs. (A.27) and (A.35), reading o� the
coe�cients of each power of ln µLb0. In doing so we must take into account extra powers of
ln µLb0 in the soft function due to the shifted scale ‹ú

L
= ‹L(µLb0)≠1+p in Eq. (2.37) that we

use. Then we have for the terms we need up to NNLL accuracy, at tree level:

ÂF (0)
0 = fi(x1, µL)f

ī
(x2, µL) , (3.59)

where i, ī = g for Higgs production and i = q for Drell-Yan, and at O(–s):

ÂF (1)
2 = fi(x1, µL)f

ī
(x2, µL)ZS

�0
2 (1 ≠ 1) = 0 (3.60a)

ÂF (1)
1 = fi(x1, µL)f

ī
(x2, µL)

3
ZS�0 ln ‹L

µL

+ Zf �0 ln ‹2
H

Q2 + 2“0
f

4
(3.60b)

≠ [2P (0)
ij

¢ fj(x1, µL)]f
ī
(x2, µL) ≠ fi(x1, µL)[2P

īj
¢ fj(x2, µL)]

ÂF (1)
0 = fi(x1, µL)f

ī
(x2, µL)c1

ÂS + [I(1)
ij

¢ fj(x1, µL)]f
ī
(x2, µL) + fi(x1, µL)[I(1)

īj
¢ fj(x2, µL)] .

(3.60c)

Note that ÂF (1)
2 vanishes due to the extra term from the shift ‹L æ ‹ú

L
since the double log term

was promoted from the fixed-order soft function to the exponent in Eq. (2.38), as designed.
Up to NNLL accuracy, the only O(–2

s) terms we need come from the the –2
s piece of the soft

function induced by ‹L æ ‹ú
L

, and the O(–2
s) terms in the V— piece of ÂF in Eq. (3.3), which

from Eq. (2.45) we see has the expansion

V—(‹ú
L, ‹H ; µL) = 1 +

Œÿ

n=2

n+1ÿ

k=1

1–s(µL)
4fi

2n

V (n)
k

lnk µLb0 , (3.61)

where at O(–2
s),

V (2)
3 = ZS�0—0

1
1 ≠ 1

2
2

= 1
2ZS�0—0 (3.62a)

V (2)
2 = ZS�0—0 ln ‹H

‹L

(3.62b)

V (2)
1 = 0 . (3.62c)

The V (2)
3 coe�cient actually just multiplies a small log ln2 µLb0, so strictly at NNLL we can

drop it. Then the only relevant piece of ÂF (2) we would need at NNLL accuracy is

ÂF (2)
2 = fi(x1, µL)f

ī
(x2, µL)

1
V (2)

2 ≠ ZS�0—0 ln ‹H

‹L

2
= 0 , (3.63a)
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where the second term in F (2)
2 came from the shift ‹L æ ‹ú

L
in the one-loop soft function. So

at NNLL, all pieces of ÂF (2) (i.e. the fixed-order O(–2
s) terms) vanish or can be dropped.

Then, the resummed cross section in momentum space Eq. (3.1), using Eqs. (3.5), (3.7),
and (3.40) to express the integral Ib and the coe�cients ÂF (n)

k
in the expansion of the fixed-

order prefactor ÂF Eq. (3.58) and given explicitly by Eqs. (3.59), (3.60), and (3.63), can be
written:

d‡

dq2
T

dy
= 1

2‡0C2
t (M2

t , µT )H(Q2, µH)U(µL, µH , µT )C(µL, ‹L, ‹H)

◊
Œÿ

n=0

2nÿ

k=0

1–s(µL)
4fi

2n ÂF (n)
k

(x1, x2, Q; µL, ‹L, ‹H)Ik

b (qT ; µL, ‹L, ‹H ; –, a0; —, b0) .

(3.64)
This compact expression still has many pieces to it. We provide a roadmap to where to find
them all:

The basic cross sections ‡0 for Higgs production (gg æ H) and for Drell-Yan (qq̄ æ “ú)

‡Higgs
0 = M2

h

576fiv2s
, ‡DY

0 = (4fi–em(Q))2

3NcQ2s
, (3.65)

The hard function H is given by Eq. (A.18), with the non-cusp anomalous dimensions
for DY given by Eq. (A.10) and for Higgs by Eq. (A.11), and the one-loop constant terms
for DY and Higgs given by Eq. (A.17). C2

t for Higgs production is given by Eq. (A.20) while
it is set to 1 for DY. Note for Higgs production the natural hard scale µH = iQ = iMH .
In the hard function, the µ evolution kernel U and where it appears in the soft function,
TMDPDF, and rapidity evolution factors, the cusp anomalous dimension coe�cients �n for
DY and Higgs are given by Eq. (A.9). The µ (virtuality RG) evolution kernel U(µL, µH , µT )
is given in Eq. (2.26), with the parts of the exponent K�,“ , ÷� defined and expanded up to
NNLL accuracy in App. A.1.

The factor C(µL, ‹L, ‹H), which came from expressing the exponentiated “conformal”
part of the rapidity evolution kernel V� in Eq. (2.57) as a Gaussian in ln b, is defined in
Eq. (3.6), and expanded to NLL and NNLL accuracy in App. A.6.

The coe�cients ÂF (n)
k

coming from the fixed-order terms in the soft function, TMDPDFs,
and “non-conformal” part of the rapidity evolution kernel V— defined in Eq. (2.55) have been
given above in Eqs. (3.59), (3.60), and (3.63) up to the order to which we shall need them for
NNLL accuracy.

The integrals Ik

b
which we defined in Eq. (3.7) are given in final evaluated form in

Eq. (3.40), the calculation of which formed the bulk of this Sec. 3 and is one of the main results
of this paper (along with the scale choices in Sec. 2 that lead to the form of Eq. (3.64) itself).
That result is in terms of derivatives Eq. (3.44) of the integrals Hn of Hermite polynomials
against the Gaussian in Eq. (3.28) appearing in I0

b
in Eq. (3.37), the explicit results for which

are given by Eqs. (3.33) and (E.14). Those integrals depend on the parameters –, a0 and
—, b0 that we used in the expansion of the function �(1 ≠ ix)2 in terms of Gaussian-weighted
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Figure 8. Systematic improvement in the accuracy of cross section with increasing number of terms.
Exact (red) gives resummed cross section without Hermite expansion (i.e. numerical b integration).
N = 6 (blue) is the result with six terms in Hermite expansion, 3 each for real and imaginary terms.
N=7(Black) is the result with 7 terms, 4 for real and 3 for imaginary.

Hermite polynomials in Eq. (3.23). For the numerical results in this paper, we used the values

a0 = 2“2
E + fi2

6 ¥ 2.31129 and b0 = 2
3“2

E + ’3
3“E

+ fi2

6 ¥ 2.56122 , (3.66)

which were given in Eq. (3.24), and values of –, — given by

–2 ≠ a0 = 4 and —2 ≠ b0 = 4 , (3.67)

which were given in Eq. (3.26). These choices are by no means unique; other values can
also be chosen. Our choices allowed su�ciently accurate representation of the exact function
�(1 ≠ ix)2 with an economical basis of a few terms each for the real and imaginary parts, the
coe�cients of which we gave in Eq. (3.27).

Table 1 gives the orders to which the anomalous dimensions and fixed-order pieces of
Eq. (3.64) are to be truncated to achieve NLL, NNLL, etc. perturbative accuracy in the
resummed cross section.

It is good to remind ourselves at this point that the final formula Eq. (3.64) is a threefold
expansion as described in Sec. 1.3: a perturbative expansion in –s and resummed logs, an
additional fixed-order expansion of the non-conformal piece V— of the rapidity evolution inside
ÂF , and an expansion in Hermite polynomials in evaluating each Ik

b
. It is thus quintessentially

a “formula” according to a delightful definition we recently encountered: an expression given
by an = sign with a controlled error of known parametric form.6

4 Matching to the fixed order cross section

The resummed formula Eq. (3.64) accurately predicts the spectrum for relatively low (but
not too low) values of qT . At large qT ≥ Q, the non-singular terms in qT become just as big

6
A. Manohar, “The Photon PDF,” talk at Lattice QCD workshop, Santa Fe, NM, Aug. 28–Sep 1, 2017,

describing work in [33, 34].
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Figure 11. Comparison of NNLL+NLO cross section in two schemes, b-space resummation Eq. (2.30)
and p-space resummation Eq. (3.64). The overlap is a good cross-check of the accuracy of our method,
and the improvement in the reliable estimation of uncertainties and computation time in our resum-
mation scheme has been described in the text.

will not really do justice to any of these other methods. A more detailed discussion of them
was given in [21] as well as [29].

The earliest one was the CSS formalism [10, 20], which was applied in, e.g. [14, 38], for
computing Drell-Yan and Higgs transverse momentum cross sections. The value of µL is
implicitly chosen to be 1/b0. There is no explicit independent scale ‹, however a comparison
of the resummed exponents reveals that the implicit choice for ‹L is also 1/b0. So the central
values agree with the b space resummation implemented in Eq. (2.30) and an earlier paper
[21].

The di�erence in the two approaches is two-fold. Firstly, the error analysis using scale
variation is di�erent in the absence of an independent scale ‹. Varying only µ scales is likely
to underestimate the uncertainty. Second, in the high qT region, the matching procedure is
di�erent. In the CSS formalism, there is no systematic way of turning o� resummation while
matching to the fixed order cross section, so that the predicted results di�er in the high qT

region. The Landau pole is handled by implementing a smooth cut-o� in b space. However,
as we have seen, as long as we are at high Q, this does not a�ect the prediction. An explicit
comparison between the two schemes was given in [21].

In Fig. 11, we compare the b space resummation scheme for the implementation in [21]
at NNLL+NLO accuracy for the Higgs and Drell-Yan transverse spectrum with the hybrid
b-space/momentum-space resummation scheme developed in this paper. This will serve tran-
sitively as a comparison also with other b space resummation schemes. We can deduce the
following

• The width of the error bands is comparable in the entire region of qT which is not too
surprising since the error analysis in both [21] and the present paper were based on the
same variations Eq. (4.8) around the respective central values.

• In the low qT region, the central value in our hybrid scheme is lower that the pure b

– 52 –
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Summary 

	
q pT dependent observables 

Higgs/Drell-Yan, SIDIS, Broadening  

q Higgs pT spectrum 
focus on scale setting µL(pT), νL(b) 
free from Landau pole and arbitrary cutoff 
semi-analytic (fast) result and systematic 
(accurate) expansion 
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Jets	in	collider		

q  Remodelling since 2015 and 9 faculties at this moment 
2 seniors: Huangzhong Huang,  Yongshi Wu,  
Yang Shen, Chuan Zheng, Zenghua Li, Xuguang Huang, 
New ones: Xiaolong Wang,  Tao Luo, Daekyoung Kang 

q  4 Postdoc’s (Wanbing He, Subikash Choudhury, Long 
Ma, Weihu Ma)+ 2 Students (Yi Zhang , Yu Hu) 

High energy physics at Fudan U 
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Jets	in	collider		
q  Experimental 

q  RHIC-STAR in US (simulating early universe) 

q  Belle II in Japan (CP symmetry violation in nature) 

q  BES III in Beijing (charm quark physics) 

q  Neutrino-less double beta decay (new physics signal) 

q  Theoretical 

q  Collider pheno. including QCD jets, quarkonium 

q  quark-gluon matter, compact stars 

q  quantum gas at low temperatures 

q  model for nuclear interaction 

Physics Program in the group 
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Leading Log 
Next to LL 
NNLL 

log � = ↵sL
2 + ↵2

sL
3 + · · ·

+↵sL+ ↵2
sL

2 + · · ·
+↵s + ↵2

sL+ · · ·
+↵2

s + · · ·

Log Log Log … 

Log(Eg) Log(✓)

L = Log
Perturbation threaten by large log : ↵s L ⇠ 1

+ other 
   diagrams 

Resum large logs! 
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FIG. 6: Cumulant cross section in τa
1 at Q = 80 GeV and

x = 0.2. Colored bands show theoretical uncertainties around
central values (lines) to LL (dotted line, green band), NLL
(dashed line, blue band), and NNLL (solid line, red band) ac-
curacy and the horizontal dashed line is the total cross section
at fixed x,Q2.

VIII. RESULTS

In this section we present our numerical results for the
three versions of DIS 1-jettiness: τa1 , τ

b
1 , and τc1 . We

plot the cross sections accurate for small τ1 resummed
from LL to NNLL accuracy, and also the singular terms
at fixed order O(αs) (NLO) for comparison. (We esti-
mate the size of the small missing non-singular terms by
comparing to the known O(αs) cross section integrated
over all τ1.) We start by describing the τa1 spectrum in
detail, and then compare the features of the τb1 and τc1
cross sections relative to the results for τa1 . We choose
s = (300 GeV)2 as in the H1 and ZEUS experiments.
For the PDFs, we use the MSTW2008 [110] set at NLO
and include five quark and antiquark flavors excluding
top. To be consistent with the αs used in the NLO
PDFs we use the 2-loop beta function for running αs

and αs(mZ) = 0.1202.
We present results for the cumulant cross section σc(τ1)

defined in Eq. (183) and the dimensionless distribution

dσ̂

dτ1
=

1

σ0

dσ

dτ1
=

d

dτ1
σc(τ1) . (224)

Note that both the cumulant σc(τ1) and the differential
distribution dσ̂/dτ1 are differential in x and Q2. How-
ever, for notational simplicity we made their x and Q2

dependences implicit in this section.

A. τa
1 cross section

In this subsection, we present results for the cumulant
cross section σc(τ1) and differential cross section dσ̂/dτ1
for the “aligned” 1-jettiness τ1 = τa1 .
Fig. 6 shows the τa1 cumulant cross section, defined

by Eq. (183), at Q = 80 GeV and x = 0.2. In or-

FIG. 7: Weighted differential cross section in τa
1 at Q =

80 GeV and x = 0.2. Colored bands show theoretical uncer-
tainties around central values (lines) at fixed order αs (dot-
ted line, gray band) and resummed to NLL (dashed line, blue
band) and NNLL (solid line, red band) accuracy.

FIG. 8: Differential cross section in τa
1 at Q = 80 GeV and

x = 0.2 in the peak region, NNLL with nonperturbative shape
function taken into account (NNLL PT+NP, dashed, orange),
and without NP shape function at fixed-order αs (NLO PT,
dotted, gray) and resummed (NNLL PT, solid, red).

der to illustrate perturbative convergence the results re-
summed to LL, NLL, and NNLL accuracy are shown.
The bands indicate perturbative uncertainties by vary-
ing the scales µH,B,J,S given by “profile functions” as
described in Sec. VIIC 1, and there is excellent order-by-
order convergence, and beautiful precision at NNLL or-
der. The cumulant cross section increases monotonically
from the small τa1 region and begins to saturate near for
large τa1 where the integral defining this cumulant be-
comes that for the total cross section. There is a small
gap between the total cross section at O(αs) (dashed
horizontal line) and our NNLL cumulant at large τa1 , re-
flecting the small size of nonsingular terms not taken into
account in this paper. Note however that these terms are
important at the level of precision of our cumulant cross
section, and hence they will be considered in the future.

Log singularity in 
NLO  
cured in NLL, NNLL  

Good     
convergence 
from NLL to NNLL  

Singular behavior due to divergence in local QFT  
Renormalization leaves log of τ~λ  
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Large Log under control 



2 Jet Factorization Thms 
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SCET factorization for ee, pp 

H: q/g created at the short distance 

J, f: final/initial radiation of coll. partons 

e+ e- 
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jet
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Universal structure captured by EFT, Not easy in QCD! 

�ee = Hee ⇥ J ⌦ J ⌦ See

S: radiation of soft partons 

pH~(1,   1,   1 ) Q 

pc~(1,   λ2,  λ )Q 

ps~(λn,  λn, λn)Q  

λ~pT/Q<<1 
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q  RG equation 

q  Resum large logs 
q  No large logs 

at its natural scale      ~Q or, pT  
q  Evolution 

from       to common scale 
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Beam Function Running

I Scales and running:

H

J

Sf

B

µ

f

�̂

µ�

µs

µb

µ

µh

µj

µh ⇠ scale of hard interaction
µj ⇠ inv. mass of final state jet
µb ⇠ inv. mass of initial state jet
µs ⇠ energy of soft radiation
µ⇤ ⇠ low scale (⇤QCD)

I Unlike f , the RGE for B includes Sudakov double logs

B(s, z; µ) =
Z

ds0 UB(s, s0; µ, µb) B(s0, z; µb)

Invariant mass restrictions on the real radiation yield terms
�B(s, s0; µ) / ln(µ/s), which sum the Sudakov double logs
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µµi

µi

µ
d

dµ
eJ(µ) = �J(µ) eJ(µ)

K = L
1X

k=1

(↵sL)
k +

1X

k=1

(↵sL)
k + · · · L = ln(µ/µJ)

eJ(µ) = eJ(µj) e
K(µj ,µ)�⌘(µj ,µ) ln(e⌫µ2

j )

Resummation by RG evolution 
similar to H,B,S 

LL NLL 


