A fast and accurate method for perturbative resummation of pT dependent observables
arXiv:I7I0.00078, DK, Lee,Vaidya

Daekyoung Kang

Fudan University

$3^{\text {rd }}$ China LHCP Workshop

pT dependent observables

\square small $\mathrm{p} T$ respect to beam or jet axis

- Drell-Yan and Higgs production
a final hadron in Semi-Inclusive DIS
\square Event shape broadening: pT around thrust axis

- Large logarithm: Log[pT/Q]

Q is heavy boson mass or the collision energy

soft and collinear modes

$$
\begin{aligned}
& \text { (p-, } \left.\mathrm{p}^{+}, \mathrm{p}^{\mathrm{T}}\right) \quad \mu_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \\
& \mathrm{P}_{\mathrm{H}} \sim(\mathrm{I}, \mathrm{I}, \mathrm{I}) \mathrm{Q} \mathrm{Q} \\
& \mathrm{Pc}_{\mathrm{c}} \sim\left(\mathrm{I}, \lambda^{2}, \lambda\right) \mathrm{Q} \mathrm{pT}, \mathrm{Q} \\
& \mathrm{p}_{\mathrm{s}} \sim(\lambda, \lambda, \lambda) \mathrm{Q} \mathrm{p}, \mathrm{p} \top \\
& \lambda \sim p T / Q \ll 1, Q=h i g g s \text { mass }
\end{aligned}
$$

hierarches in virtuality and in rapidity induce large logs:
$\log \left[\mu_{\mathrm{H} /} \mu_{\mathrm{L}}\right]$ and $\log \left[\mathrm{V}_{\mathrm{H} /} \mathrm{V}_{\mathrm{L}}\right]$ and they should be resummed. What to set for $\mu_{H, L}$ and $\nu_{H, L}$? looks trivial but NOT

Factorization in p space

a complicated convolutions in p -space:

$$
\begin{aligned}
\frac{d \sigma}{d^{2} q_{T} d y}= & C_{t}^{2}\left(M_{t}^{2}, \mu\right) \sigma_{0} H\left(Q^{2} ; \mu\right) \int d^{2} \vec{q}_{T s} d^{2} \vec{q}_{T 1} d^{2} \vec{q}_{T 2} \delta^{2}\left(\overrightarrow{q T}_{T}-\left(\vec{q}_{T s}+\vec{q}_{T 1}+\vec{q}_{T 2}\right)\right) \\
& \times S\left(\vec{q}_{T s} ; \mu, \nu\right) f_{1}^{\perp}\left(\vec{q}_{T 1}, x_{1}, p^{-} ; \mu, \nu\right) f_{2}^{\perp}\left(\vec{q}_{T 2}, x_{2}, p^{+} ; \mu, \nu\right),
\end{aligned}
$$

$$
\begin{array}{ll}
\quad\left(\mathrm{p}-, \mathrm{p}^{+}, \mathrm{pT}\right) & \mu_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}} \\
\mathrm{PH}_{\mathrm{H}} \sim(\mathrm{I}, \mathrm{I}, \mathrm{I}) \mathrm{Q} & \mathrm{Q} \\
\mathrm{P}_{\mathrm{c}} \sim\left(\mathrm{I}, \lambda^{2}, \lambda\right) \mathrm{Q} & \mathrm{pT}, \mathrm{Q} \\
\mathrm{P}_{\mathrm{s}} \sim(\lambda, \lambda, \lambda) \mathrm{Q} & \mathrm{pT}, \mathrm{p}^{\top} \\
\lambda \sim \mathrm{pT} / \mathrm{Q} \ll 1, \mathrm{Q}=\text { higss mass }
\end{array}
$$

RGE in μ_{i}, v_{i} resums large log: $\log \left[\mu_{H /} / \mu_{\mathrm{L}}\right]$ and $\log \left[V_{H /} v_{L}\right]$.

Factorization in \mathbf{p} and \mathbf{b} space

- complicated convolutions in p-space:

$$
\begin{aligned}
\frac{d \sigma}{d^{2} q_{T} d y}= & C_{t}^{2}\left(M_{t}^{2}, \mu\right) \sigma_{0} H\left(Q^{2} ; \mu\right) \int d^{2} \vec{q}_{T s} d^{2} \vec{q}_{T 1} d^{2} \vec{q}_{T 2} \delta^{2}\left(\overrightarrow{q_{T}}-\left(q_{T} s+\vec{q}_{T 1}+\vec{q}_{T 2}\right)\right) \\
& \times S\left(\vec{q}_{T s} ; \mu, \nu\right) f_{1}^{\perp}\left(\vec{q}_{T 1}, x_{1}, p^{-} ; \mu, \nu\right) f_{2}^{\perp}\left(\vec{q}_{T 2}, x_{2}, p^{+} ; \mu, \nu\right)
\end{aligned}
$$

- Fourier transform $\widehat{f}(\vec{b}) \equiv \int \frac{d^{2} q_{T}}{(2 \pi)^{2}} e^{i \vec{b} \cdot q_{T}} f\left(\overrightarrow{q_{T}}\right)$
\square a simple product in b-space

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}^{2} d y}=\sigma_{0} & \pi(2 \pi)^{2} C_{t}^{2}\left(M_{t}^{2}, \mu\right) H\left(Q^{2}, \mu\right) \int d b b J_{0}\left(b q_{T}\right) \\
& \times \widetilde{S}(b, \mu, \nu) \widetilde{f}_{1}^{\perp}\left(b, x_{1}, p^{-} ; \mu, \nu\right) \widetilde{f}_{2}^{\perp}\left(b, x_{2}, p^{+} ; \mu, \nu\right)
\end{aligned}
$$

$\mathrm{J}_{0}(\mathrm{x})$: Bessel function from Fourier kernel

RGE and scale setting

\square Solution of RGE resums large logs

$$
\widetilde{S}\left(b, \mu_{L}, \nu_{H}\right) \propto \exp \left[-\Gamma_{0} \frac{\alpha\left(\mu_{L}\right)}{\pi} \ln \left(\frac{\nu_{H}}{\nu_{L}}\right) \ln \left(\mu_{L} b_{0}\right)\right]
$$

$$
b_{0}=b e^{\gamma_{E}} / 2
$$

\square high scales: $\mu_{H}, V_{H} \sim$ Higgs mass

- conventional b-space choice $\mu_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}} \sim \mathrm{I} / \mathrm{b}$: but Landau pole $\alpha_{s}(\mathrm{I} / \mathrm{b})$ and IR cutoff needed
- p-space $\mu_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}} \sim \mathrm{pT}$:

NO pole $\alpha_{s}(\mathrm{PT})$ and NO cutoff needed but singular in UV limit $\quad \widetilde{S} \propto b_{0}^{-\Gamma_{0}}$

A prescription for the scales

$$
\nu_{L} \rightarrow \nu_{L}^{*}=\nu_{L}\left(\mu_{L} b_{0}\right)^{-1+p} \quad p=\frac{1}{2}\left[1-\frac{\alpha_{s}\left(\mu_{L}\right) \beta_{0}}{2 \pi} \ln \frac{\nu_{H}}{\nu_{L}}\right]
$$

\square Soft exponent: $-\frac{\alpha_{s}\left(\mu_{L}\right)}{4 \pi} 4 \Gamma_{0} \ln \left(\mu_{L} b_{0}\right) \ln \frac{\nu_{H}}{\nu_{L}^{*}}$

$$
\rightarrow-4 \Gamma_{0} \frac{\alpha_{s}}{4 \pi} \ln \left(\mu_{L} b_{0}\right)\left[\ln \left(\frac{\nu_{H}}{\nu_{L}}\right)+(1-p) \ln \left(\mu_{L} b_{0}\right)\right]
$$

Not arbitrary and designed to give $O\left(\alpha_{s}{ }^{2}\right)$ term
\square Always Gaussian at higher orders
$\ln \frac{\nu_{H}}{\nu_{L}} \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{L}\right)}{4 \pi}\right)^{n+1}\left(\mathbb{Z}_{S} \Gamma_{n} \ln \mu_{L} b_{0}+\gamma_{R S}^{n}\right) \Rightarrow-A \ln ^{2}(\Omega b)$
$\mathrm{A}, \Omega\left(\mu_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}, \mu_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}, \ldots\right)$ are constant of b.

Back to p-space

- Essential integral $I_{b}^{k} \equiv \int_{0}^{\infty} d b b J_{0}\left(b q_{T}\right) \ln ^{k}\left(\mu_{L} b_{0}\right) e^{-A \ln ^{2} \Omega b}$
- Integrands at small $\mathrm{pT} \sim 3 \mathrm{GeV}$ for p-space (ours) VS b-space scale choices

Landau pole is absent with our scheme.

Back to p-space

- Essential integral in b-space

$$
I_{b}^{k} \equiv \int_{0}^{\infty} d b b J_{0}\left(b q_{T}\right) \ln ^{k}\left(\mu_{L} b_{0}\right) e^{-A \ln ^{2} \Omega b}
$$

\square done after numerical integration over b! but a rapid oscillation with b and slow convergence.

- Can we do it analytically?

With Mellin-Barnes rep. $\quad J_{0}(z)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d t \frac{\Gamma[-t]}{\Gamma[1+t]}\left(\frac{1}{2} z\right)^{2 t}$
b integral becomes
$t=c+i x$ integral.

Semi-analytic method

\square Series expansion with Hermite polynomial

$$
\begin{gathered}
\Gamma(1-i x)^{2}=e^{-a_{0} x^{2}} \sum_{n=0}^{\infty} c_{2 n} H_{2 n}(\alpha x)+\frac{i \gamma_{E}}{\beta} e^{-b_{0} x^{2}} \sum_{n=0}^{\infty} c_{2 n+1} H_{2 n+1}(\beta x) \\
H_{0}(x)=1 \quad H_{2}(x)=4 x^{2}-2 \quad a_{0}=2 \gamma_{E}^{2}+\frac{\pi^{2}}{6} \quad \alpha^{2}-a_{0}=4 \\
c_{0}=1.02248, \quad c_{2}=0.02254, \quad c_{4}=0.00206, \quad c_{6}=3.42 \times 10^{-5}
\end{gathered}
$$

\square It is independent of variables $\mu_{\mathrm{L}, \mathrm{H}}, \mathrm{V}_{\mathrm{L}, \mathrm{H}}, \mathrm{QT}$ and results are analytic func. of those variables.

Final expression

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}^{2} d y}= & \frac{1}{2} \sigma_{0} C_{t}^{2}\left(M_{t}^{2}, \mu_{T}\right) H\left(Q^{2}, \mu_{H}\right) U\left(\mu_{L}, \mu_{H}, \mu_{T}\right) C\left(\mu_{L}, \nu_{L}, \nu_{H}\right) \\
& \times \sum_{n=0}^{\infty} \sum_{k=0}^{2 n}\left(\frac{\alpha_{s}\left(\mu_{L}\right)}{4 \pi}\right)^{n} \widetilde{F}_{k}^{(n)}\left(x_{1}, x_{2}, Q ; \mu_{L}, \nu_{L}, \nu_{H}\right) I_{b}^{k}\left(q_{T} ; \mu_{L}, \nu_{L}, \nu_{H} ; \alpha, a_{0} ; \beta, b_{0}\right) .
\end{aligned}
$$

$$
I_{b}^{0}=\frac{2}{\pi q_{T}^{2}} \sum_{n=0}^{\infty} \operatorname{Im}\left\{c_{2 n} \mathcal{H}_{2 n}\left(\alpha, a_{0}\right)+\frac{i \gamma_{E}}{\beta} c_{2 n+1} \mathcal{H}_{2 n+1}\left(\beta, b_{0}\right)\right\}
$$

- Integral of Hermite against the Gaussian func.

$$
\mathcal{H}_{0}=e^{-\frac{A}{1+a_{0} A}(L-i \pi / 2)^{2}} \frac{1}{\sqrt{1+a_{0} A}} \quad \mathcal{H}_{1}=-\frac{2 z_{0} \alpha}{1+a_{0} A} \mathcal{H}_{0} \quad z_{0}=A(\pi / 2+i L)
$$

- coefficients of Log in S, f functions

$$
\begin{aligned}
& \widetilde{F}_{0}^{(0)}=f_{i}\left(x_{1}, \mu_{L}\right) f_{\bar{i}}\left(x_{2}, \mu_{L}\right) \\
& \widetilde{F}_{0}^{(1)}=f_{i}\left(x_{1}, \mu_{L}\right) f_{\bar{i}}\left(x_{2}, \mu_{L}\right) c_{\widetilde{S}}^{1}+\left[I_{i j}^{(1)} \otimes f_{j}\left(x_{1}, \mu_{L}\right)\right] f_{\bar{i}}\left(x_{2}, \mu_{L}\right)+f_{i}\left(x_{1}, \mu_{L}\right)\left[I_{\bar{i} j}^{(1)} \otimes f_{j}\left(x_{2}, \mu_{L}\right)\right]
\end{aligned}
$$

Final results

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}^{2} d y}= & \frac{1}{2} \sigma_{0} C_{t}^{2}\left(M_{t}^{2}, \mu_{T}\right) H\left(Q^{2}, \mu_{H}\right) U\left(\mu_{L}, \mu_{H}, \mu_{T}\right) C\left(\mu_{L}, \nu_{L}, \nu_{H}\right) \\
& \times \sum_{n=0}^{\infty} \sum_{k=0}^{2 n}\left(\frac{\alpha_{s}\left(\mu_{L}\right)}{4 \pi}\right)^{n} \widetilde{F}_{k}^{(n)}\left(x_{1}, x_{2}, Q ; \mu_{L}, \nu_{L}, \nu_{H}\right) I_{b}^{k}\left(q_{T} ; \mu_{L}, \nu_{L}, \nu_{H} ; \alpha, a_{0} ; \beta, b_{0}\right) .
\end{aligned}
$$

Convergence of series expansion
b- vs. p-space scheme

Summary

\square pT dependent observables Higgs/Drell-Yan, SIDIS, Broadening
\square Higgs pT spectrum focus on scale setting $\mu_{\mathrm{L}}(\mathrm{PT}), \mathrm{v}_{\mathrm{L}}(\mathrm{b})$ free from Landau pole and arbitrary cutoff semi-analytic (fast) result and systematic (accurate) expansion

Thank you!

High energy physics at Fudan U

- Remodelling since 2015 and 9 faculties at this moment 2 seniors: Huangzhong Huang, Yongshi Wu, Yang Shen, Chuan Zheng, Zenghua Li, Xuguang Huang, New ones: Xiaolong Wang, Tao Luo, Daekyoung Kang

- 4 Postdoc's (Wanbing He, Subikash Choudhury, Long Ma, Weihu Ma)+ 2 Students (Yi Zhang ,Yu Hu)

Physics Program in the group

- Experimental
- RHIC-STAR in US (simulating early universe)
- Belle II in Japan (CP symmetry violation in nature)
- BES III in Beijing (charm quark physics)
- Neutrino-less double beta decay (new physics signal)
- Theoretical
- Collider pheno. including QCD jets, quarkonium
- quark-gluon matter, compact stars
- quantum gas at low temperatures
- model for nuclear interaction

Backup

Log Log Log

probability
of splitting $\frac{1}{E_{g}(1-\cos \theta)}$

$$
\log \left(E_{g}\right) \log (\theta)
$$

soft and collinear enhancements
Perturbation threaten by large log : $\alpha_{s} L \sim 1$

$$
\sigma=1+\alpha_{s}+\alpha_{s}^{2}+\cdots
$$

$$
\begin{gathered}
\log \sigma=\alpha_{s} L^{2}+\alpha_{s}^{2} L^{3}+\cdots \text { Leading Log } \\
+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\cdots \text { Next to } \mathbf{L L} \\
+\alpha_{s}+\alpha_{s}^{2} L+\cdots \text { NNLL } \\
+\alpha_{s}^{2}+\cdots
\end{gathered}
$$

+ other
\quad diagrams

Large Log under control

Singular behavior due to divergence in local QFT
Renormalization leaves \log of $\tau \sim \lambda$
Log singularity in NLO

SCET factorization for ee, pp

$H_{e e} \times J \otimes J \otimes S_{e e}$

$$
H_{p p} \times f \otimes f \otimes S_{p p}
$$

Universal structure captured by EFT, Not easy in QCD!
$\mathbf{H}: q / \mathrm{g}$ created at the short distance

$$
\begin{aligned}
& \mathrm{PH}_{\mathrm{H}} \sim(I, \quad I, \quad \mathrm{I}) \mathrm{Q} \\
& \mathrm{P}_{\mathrm{c}} \sim\left(I, \lambda^{2}, \lambda\right) \mathrm{Q} \\
& \mathrm{P}_{\mathrm{s}} \sim\left(\lambda^{n}, \lambda^{n}, \lambda^{n}\right) \mathrm{Q}
\end{aligned}
$$

J , f: final/initial radiation of coll. partons
S: radiation of soft partons

$$
\lambda \sim p T / Q \ll 1
$$

Resummation by RG evolution

\square RG equation similar to $\mathrm{H}, \mathrm{B}, \mathrm{S}$

$$
\mu \frac{d}{d \mu} \widetilde{J}(\mu)=\gamma_{J}(\mu) \widetilde{J}(\mu) \quad \Rightarrow \quad \widetilde{J}(\mu)=\widetilde{J}\left(\mu_{j}\right) e^{K\left(\mu_{j}, \mu\right)-\eta\left(\mu_{j}, \mu\right) \ln \left(\widetilde{\nu} \mu_{j}^{2}\right)}
$$

$$
K=L \sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\cdots
$$

$$
L=\ln \left(\mu / \mu_{J}\right)
$$

- Resum large logs
- No large logs at its natural scale $\mu_{i} \sim \mathrm{Q}$ or, $\mathrm{p} T$
- Evolution from μ_{i} to common scale μ

