Exotica Searches at the LHC

Li Yuan¹, Huaqiao Zhang² (represent) ¹Beihang University, ²Institute of High Energy Physics On Behalf of ATLAS and CMS Collaborations

CLHCP2017, Nanjing, Jiangsu Province Dec 22-24, 2017

Outline

*

*

*

1.5

Introduction

- Discovery of a scalar boson consistent with SM Higgs
 - Is it SM Higgs or something else ?
 - new window for physics beyond SM

• Exotica searches

- cover wide range of final states
- numerous models (extension of SM):
 - hierarchy problem
 - neutrino mass
 - dark matter

• Search strategies:

- direct searches: look for resonance
- indirect searches: look for any disagreement

Heavy Boson Search

Di-jet resonance

- Probe numerous BSM models: String, Axigluons/Colorons, Color-octet scalar, W'/Z' bosons, RS ...
- Search for bumps on the smoothly falling di-jet invariant mass spectrum.

No significant excess observed in 36-37 fb⁻¹.

Lower limits up to 7.7 TeV for different models.

$Z' \rightarrow l^+ l^-$

- Generally, all new particles that can decay to dilepton called Z'
- Many BSM theories predict $Z' \rightarrow l^+ l^-$
 - extension of SM in Grand Unification (e.g Z'_{ψ})
 - some SUSY models predict new spin-0 resonance

Excellent modelling for all data up to 3TeV.

Limit can reach 5TeV by all Run 2 data: 100 fb⁻¹.

 $W' \rightarrow lv$

- Search for heavy boson with lepton+MET signature.
- Look for excess on the transverse mass distribution.
- Dominant backgrounds coming from: W+jets, Top, QCD, Z, multi-bosons

Assuming W' boson with the same coupling as the SM W boson, W' masses below 5.1TeV are excluded at 95% CL.

W'→tb

- Search for heavy boson with $tb \rightarrow bblv$ signature.
- Directly probe the W' coupling to 3rd generation quark, can be enhanced w.r.t lighter quarks in some models.
- Complement search for W' $\rightarrow lv$ and W' $\rightarrow VV$
- Unlike W' →*lv*, the W' →*tb*→*bblv* allows W' mass to be fully reconstructed up to a quadratic ambiguity.

Exclude right-handed W' boson below 3.4 TeV if $M_{W_R'} \gg M_{v_R}$ and 3.6 TeV if $M_{W_R'} < M_{v_R}$

Leptoquark Search

Leptoquarks

- Leptoquarks (LQs) arise in many models, such as grand unified theories, compositeness models and superstring theories.
- LQs: carry colour charge, fractional electric charge, and both lepton and baryon quantum numbers.
- If exist, decay into a lepton and a quark. Search for resonance of lepton+jet in experiment.

No significant excess observed in 2~36fb⁻¹. Results in terms of $\beta = BR(LQ \rightarrow lq)$

Heavy Neutrinos

Type III Seesaw

- Similar as Type I SS. But neutrino mass arises from mediation of massive SU(2) triplet Σ^{\pm} , Σ^{0}
- Decay through $\Sigma^{\pm} \to W^{\pm}\nu, \Sigma^{\pm} \to Z\ell^{\pm}, \Sigma^{\pm} \to H\ell^{\pm}, \Sigma^{0} \to W^{\pm}\ell^{\mp}, \Sigma^{0} \to Z\nu, \Sigma^{0} \to H\nu,$
- $\Sigma^{\pm}\Sigma^{0}, \Sigma^{\pm}\Sigma^{\mp} \rightarrow \geq 3 l^{\pm}$, search with multi lepton final states

Most sensitive probe to date of the type III seesaw mechanism:

exclude the heavy fermions < 840GeV

Vector-Like Quarks Search

Vector-Like Quarks

290000

(XT

13 TeV

 $\sigma_{max}\left(fb\right)$

0

 $\overline{t} / \overline{b}$

QQ Ybj Tbi

Bībj Tītj

Хītj

0000

0

- Extra family of spin 1/2 quarks
 - symmetric vector-like coupling to W/Z
 - Mass from direct mass term
 - Can solve hierarchy problem
- Pair production from strong interaction
 - Model independent
- Single production from electroweak
 - Depends mixing with SM quarks

• Decays to boson+heavy quark

Pair-Produced VLQ

1400

1600

1400 1500 Μ_T (GeV)

M_{reco} (GeV)

1800

Singly Produced VLQ

Pair Produced X_{5/3}

Di-boson Resonance Searches

Diboson Resonance

- Rich program of diboson resonance search
 - Spin 0: $S/H \rightarrow WW/ZZ$: extended Higgs sectors, scalar singlet
 - Spin 1: V' → VH/VV: Heavy Vector Triplet
 - Spin 2: $G^* \rightarrow VV$: Extra dimensions
- Unable to cover all the final states in this talk. Only select a few recent results.
- Highly boosted W/Z/H decay products are merged together • Use jet sub-structure algorithm to tag boosted object • V(JJ)• V(J)• V(J)

19

$WW/WZ \rightarrow lvqq$

Limits for Bulk Graviton > 1TeV, while limits for HVT model W' ~ 3TeV

$ZW/ZZ \rightarrow llqq/vvqq$

Limits for Bulk Graviton > 1TeV, while limits for HVT model W' ~ 2.5 TeV

$VH \rightarrow qqbb$

No significant excess found. Limits set on bench mark models and coupling plane.

Dark Matter Searches

Dark Matter Bench Mark Models at LHC

- Keep the mediator information.
- Simplified model with parameters of
 - $M_{mediator}$, M_{χ} , gq, g_{χ}

• Searches with MET+X or mediator

Mono- γ **/jet/V + MET**

Search for excess in the MET spectrum after Mono-object selection

Mono Higgs (bb)

- Higgs produced with DM pair
 - Z' 2HDM
- Higgs decays to bb
 - both boosted and resolved
- Dominant backgrounds
 - Z+jets, W+jets, Top, di-boson

Mediator Searches in di-jets

Dark Matter Search Summary

Spin Dependent

Spin Independent

Conclusion

- Exotica search very active field
 - large variety of analyses
 - large potential to make a discovery
- Rich results are produced
 - only a small fraction of results shown in this talk
 - tight constraints to heavy resonance or dark matter
- No sign for new physics found yet!
- Still lots of analyses ongoing based on 13 TeV data. Looking forward to more exciting results!

