Search for anomalous couplings in boosted WW/WZ $\rightarrow \mathrm{l} v q q$ production in proton-proton collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$

Cheng Chen(on behalf of CMS collaboration), Meng Lu

The Third China LHC Physics Workshop
Nanjing University, China

$$
2017 / 12 / 22-2017 / 12 / 24
$$

Outline

- Introduction
- Motivation
- Other results
- Analysis strategy
- Samples
- Event reconstruction
- background modeling
- results

Introduction

motivation

- SM can be represented by an effective field theory, not the ultimate theory. Physics beyond SM add higher order operators to the SM Lagrangian,

$$
\mathcal{L}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}} \int_{\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}}^{\text {(}}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\ldots .
$$

D6 operators have the largest impact, some of them contribute to Triple Gauge boson Couplings(TGC)

motivation

- Anomalous couplings from Lagrangian approach
$\frac{\mathcal{L}_{\text {eff }}^{V W W}}{g_{V W W}}=i g_{\nu}^{V}\left(W_{\mu \nu}^{*} W^{\mu} V^{\nu}-W_{\mu}^{*} V_{\nu} W^{\mu \nu}\right)+i \kappa_{\nu} W_{\mu}^{*} W_{\nu} V^{\mu \nu}+i \frac{\lambda_{v}}{M_{W}^{2}} W_{\lambda, \mu}^{*} W_{v}^{\mu} V^{v \lambda}$
$-g_{4}^{V} W_{\mu}^{*} W_{v}\left(\partial^{\mu} V^{v}+\partial^{v} V^{\mu}\right)+g_{5}^{V} \epsilon^{\mu \nu \lambda \rho}\left(W_{\mu}^{*} \partial_{\lambda} W_{v}-\partial_{\lambda} W_{\mu}^{*} W_{v}\right) V_{\rho}$
$+i \tilde{\kappa} W_{\mu}^{*} W_{\nu} \tilde{V}^{\mu \nu}+i \frac{\tilde{\lambda}_{V}}{M_{W}^{2}} W_{\lambda \mu}^{*} W_{\nu}^{\mu} \tilde{V}^{\nu \lambda}$,
- Anomalous Couplings from Effective Field Theory approach

3 independent D6
operators affect electroweak vector boson self
$\mathcal{L}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\ldots$.

 $\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} W^{\mu \nu}\left(D_{\nu} \Phi\right)$ $\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} B^{\mu \nu}\left(D_{\nu} \Phi\right)$

$$
g_{1}^{Z}=1+c_{W} \frac{m_{Z}^{2}}{2 \Lambda^{2}}
$$

- Relationship between them $\kappa_{\gamma}=1+\left(c_{W}+c_{B}\right) \frac{m_{W}^{2}}{2 \Lambda^{2}}$ g_{1}^{γ} is fixed to 1 by EM gauge $\kappa_{Z}=1+\left(c_{W}-c_{B} \tan ^{2} \theta_{W}\right) \frac{m_{W}^{2}}{2 \Lambda^{2}}$ invariance

$$
\lambda_{\gamma}=\lambda_{Z}=c_{W W W} \frac{3 g^{2} m_{W}^{2}}{2 \Lambda^{2}}
$$

Three independent parameters

motivation

- WW production
- WW γ and WWZ vertices
- WZ production
- WWZ vertex only

Why boosted WV \rightarrow lvqq

- Larger branch fraction of W / Z to quarks over pure leptonic final states
- Ability to reconstruct their pT in case of two W bosons
- Boosted final states are more sensitive to an aTGC signal

other results

Semileptonic channel(8 TeV)

- ATLAS arXiv:1706.01702v3

Semileptonic channel(7 TeV)

- CMS Eur. Phys. J. C 73 (2013) 2283
$-0.038<\lambda<0.030,-0.11<\Delta k_{v}<0.14$,
$-0.043<\Delta k_{\mathrm{Z}}<0.033$, tight bound on $\Delta \mathrm{g}_{1}{ }^{\mathrm{Z}}=0$
- ATLAS JHEP01(2015)049

Parameter	Observed Limit	Expected Limit
$\lambda_{Z}=\lambda_{\gamma}$	$[-0.039,0.040]$	$[-0.048,0.047]$
$\Delta \kappa_{\gamma}$	$[-0.21,0.22]$	$[-0.23,0.25]$
Δg_{1}^{Z}	$[-0.055,0.071]$	$[-0.072,0.085]$

Parameter	Observed $\left[\mathrm{TeV}^{-2}\right]$ $W V \rightarrow \ell v j$	Expected $\left[\mathrm{TeV}^{-2}\right]$ Observed $\left[\mathrm{TeV}^{-2}\right]$ $W V \rightarrow \ell v J$	Expected $\left[\mathrm{TeV}^{-2}\right]$ $c_{W W W} / \Lambda^{2}$ c_{B} / Λ^{2}	$[-5.3,5.3]$
$[-36,43]$	$[-6.4,6.3]$	$[-3.1,3.1]$	$[-3.6,3.6]$	
c_{W} / Λ^{2}	$[-6.4,11]$	$[-8.7,13]$	$[-19,20]$	$[-22,23]$

Semileptonic channel(13 TeV)

	aTGC	expected limit	observed limit
	$\frac{c_{\text {wWW }}}{\Lambda^{2}}\left(\mathrm{TeV}^{-2}\right)$	[-8.73, 8.70]	[-9.46, 9.42]
	$\frac{c_{\text {c }}}{\Lambda^{2}}\left(\mathrm{TeV}^{-2}\right)$	[-11.7, 11.1]	[-12.6, 12.0]
	${ }_{\frac{c_{B}}{}{ }^{2}}\left(\mathrm{TeV}^{-2}\right)$	[-54.9, 53.3]	[-56.1, 55.4]
	λ	[-0.036, 0.036]	[-0.039, 0.039]
	Δg_{1}^{Z}	[-0.066, 0.064]	[-0.067, 0.066$]$
	$\Delta \kappa_{Z}$	[-0.038, 0.040]	[-0.040, , 0.041]

Analysis strategy

Samples

- Data sample

Collected using single-lepton triggers with pT threshold of 24 (27) GeV for muons(electrons). Total luminosity is $19.3(19.2) \mathrm{fb}^{-1}$

- WW/WZ sample

Generated at NLO using MG5_aMC@NLO

- W+jets sample

Generated at LO using MADGRAPH5

- top sample

Generated at NLO using POWHEG

Event reconstruction
 All PF candidates

Lepton: muons(electrons)

- pt>25(30) GeV

MET

- \quad MET $>50(70) \mathrm{GeV}$

Additional selection:

jets:

- CA8 jets for $V_{\text {had }}$
For boosted
- $\mathrm{W}_{\mathrm{pT}}>200 \mathrm{GeV}$
- $\Delta \mathrm{R}(\ell, \mathrm{J})>\pi / 2$
- $\Delta \phi(\mathrm{MET}, \mathrm{J})>2.0$
- $\Delta \phi\left(\mathrm{W}_{\text {lep }}, \mathrm{J}\right)>2.0$
- $\mathrm{pT}_{\text {subleading }}<80 \mathrm{GeV}$
- AK5 jets for others
- "anti-btag"

W-tagging: Pruning $+\tau 21$

Jet pruning aim to reduce the impact of underlying event (UE), pileup (PU), and soft QCD contributions to the jet.

$$
\begin{gathered}
z_{i j}=\frac{\min \left(p_{T, i}, p_{T, j}\right)}{p_{T,(i+j)}}<z_{\mathrm{cut}} \\
\Delta R_{i j}>D_{\mathrm{cut}}=\alpha \times \frac{m}{p_{T}}
\end{gathered}
$$

When recluster the jet, when two subjets commit these two conditions, remove the soft one.
$p_{T, i}$ and $p_{T, j}$ are the transverse momenta of the i and j subjets and m and pT are with respect to the original jet. The default values for α and zcut are 0.5 and 0.1 , respectively.

"N-subjettiness"

$\tau_{N}=\frac{1}{d_{0}} \sum_{k} p_{T, k} \min \left\{\Delta R_{1, k}, \Delta R_{2, k}, \cdots, \Delta R_{N, k}\right\} \quad d_{0}=\sum_{k} p_{T, k} R_{0}$
$\tau \mathrm{N} \sim 0$ means the fat jet has N subjets, $\tau \mathrm{N} \gg 0$ means the fat jet most likely has more than N subjet.

For distinguishing QCD jets(typically 1 subjet) from a W-jet(typically 2 subjets),
 $\tau 21=\tau 2 / \tau 1<0.55$ is applied.

W-tagging: behavior and efficiency

Single $\tau 21$ has good performance on the separation between W -jets and QCD jets.

Some differences w/o PU, stable for PU=12 or 22
For $\tau 21<0.5$ and mjet~[60, 100]

$$
\begin{aligned}
& \text { eff(bkg) ~ 5\% - 3\% } \\
& \text { eff(sig) ~ 70\% - 55\% }
\end{aligned}
$$

TTbar control sample

Constructed from requiring at least one AK5 b-tagged jet outside the CA8 jet.

Data shape is broader and is slightly shifted, then used to correct the SM diboson and top mJ shape.
mean: +1.1GeV,
$\sigma:$ *1.16

Fit results to get the normalization

 corrected by ttbar control sample.

Quantity	μ channel	e channel
Data	1977	1666
W+jets	$1318(1.22 \pm 0.06)$	$1023(1.17 \pm 0.07)$
Top quark	$450(1.00 \pm 0.08)$	$364(1.00 \pm 0.10)$
WV	$204(1.35 \pm 0.77)$	$285(2.23 \pm 0.84)$
$\mathcal{A} \boldsymbol{\varepsilon}$	9.7×10^{-5}	8.3×10^{-5}

background modeling: pT shape

$\mathrm{W}+\mathrm{jets}$ is only calculated in LO, and a new region of phase space was explored, we adjust the shape and normalization from MC by comparing it to a distribution derived using an alternative method.
mJ sideband, $\mathrm{mJ} \sim(40,60) \mathrm{GeV}$, where top and SM diboson could be ignored.

Plot pT distribution of both signal and sideband, divide them after fitting to get the transfer function
Then multiply the data sideband pT by the transfer function got in previous step to get the $\mathrm{W}+$ jets pT distribution.

SM diboson and top pT shape from MC.

Results

Merged jet pT distribution:
uncertainty

W+jets normalization	20%
Scale and PDF	$18-26 \%$
luminosity	2.6%
others	negligible

aTGC limit

No evidence for anomalous couplings is found, Set Higgs combination tool cards to get the limits

Parameter	Expected Limits	Observed Limits
λ_{Z}	$[-0.014,0.013]$	$[-0.011,0.011]$
$\Delta \kappa_{\gamma}$	$[-0.068,0.082]$	$[-0.044,0.063]$
Δg_{1}^{Z}	$[-0.018,0.028]$	$[-0.0087,0.024]$

$c_{\text {WWW }} / \Lambda^{2}$ $\left(\mathrm{TeV}^{-2}\right)$	$c_{\mathrm{B}} / \Lambda^{2}$ $\left(\mathrm{TeV}^{-2}\right)$	$c_{\mathrm{W}} / \Lambda^{2}$ $\left(\mathrm{TeV}^{-2}\right)$
$[-2.7,2.7]$	$[-14,17]$	$[-2.0,5.7]$
$[-5.7,5.9]$	$[-29.2,23.9]$	$[-11.4,5.4]$
$[-4.61,4.60]$	$[-20.9,26.3]$	$[-5.87,10.54]$
$[-4.6,4.2]$	$[-260,210]$	$[-4.2,8.0]$
$[-3.9,4.0]$	$[-320,210]$	$[-4.3,6.8]$

Some other results

Thanks for Your Attention

Back up

No form factor is used to make the unitarity safety.
there is no unique prescription to regulate this behavior or to apply a suppression factor, because such a regularization would depend on the scale of new physics which is unknown a priori. Hence, in the present analysis we do not apply any form factors or cut-off scale, Λ, for new physics.

background modeling: normalization extraction

After all the selections the background comprises three main
components: W+jets, top quark(ttbar, and single top quark) and SM diboson.

Could distinguish between hadronic W and Z , though W and Z masses differ by about 10 GeV , the dijet mass resolution of the CMS near $80 \sim 100 \mathrm{GeV}$ is about 12%, insufficient to distinguish between them. Therefore, signal sontains a mixture of WW and WZ.

Why not WZ only to study aTGC?
WZ decay to final state contains a lepton, neutrino, and a pair of b-quark jets, but dataset with two b-jets are too small

We compare the extrapolated distribution with the existing $W+j e t s$ background that is constructed from MC and normalized to the m J fit yield using a Kolmogorov-Smirnov test. The test indicates that the two distributions are statistically consistent, thus completing the cross-check

