The 3nd China LHC Physics Workshop (CLHCP 2017) 22/12-24/12/Nanjing

Boosted Objects from BSM

ZHAOFENG KANG, HUAZHONG UNIVERSITY OF SCIENCE & TECHNOLOGY, 22/12/2017

Boosted EW vector bosons

Boosted Higgs boson(s)

Conclusions

Benchmark NP and its landmarks

Supersymmetry (stop) & compositeness (t') ⇒ address the hierarchy problem

Seesaw mechanism (right handed neutrino, RHN) ⇒ neutrino mass origin

Two Higgs doublets with/- singlet (extra Higgs bosons) \Rightarrow address the absence of antibaryon via baryogensis

Towards landmarks @ LHC

LHC is a QCD factory, a sea of background jets, which easily hides the colored drop, NP signals

To suppress those backgrounds, one usually requires unhadronic suppressons such as

A hadronic suppresson : fat jets J_F

hadronic & "composite" objects could develop distinguishable substructures, in SM:

Boosted top quark $t(\rightarrow 100\% Wb)$ others

Boosted electroweak (EW) vector bosons V=Z/W(\rightarrow ~70% jj')

Boosted Higgs boson h (\rightarrow **bb**, 58%)

 J_F from X decay is highly boosted, so J_F decay products are collimated

р

р

Heavy

 $M_{X} \sim \text{TeV}$

A new probe to quasi-natural compressed SUSY

Compressed SUSY: degeneracy between the lightest stop and LSP, why?

deplete the number density of bino-like dark matter via coannihilation, whose annihilation is small

Hide a lighter stop (thus natural SUSY) by removing large MET!

top carries away most momentum

However, detecting very compressed SUSY at LHC then becomes difficult....

ZK, Jinmian Li & Mengchao Zhang, EPJC 2017

A new probe to quasi-natural compressed SUSY

But, (quasi-)natural SUSY has other members

$$-\mathcal{L}_{QNS} = m_{\tilde{Q}_3}^2 |\tilde{Q}_3|^2 + \frac{m_{\tilde{B}}}{2} \tilde{B}\tilde{B} + m_{\tilde{t}_R}^2 |\tilde{t}_R|^2 + \left(h_t A_t \tilde{Q}_3 H_u t_R^{\dagger} + |D_\mu \tilde{Q}_3|^2\right) + i\sqrt{2} \left(\frac{g_Y}{6} \tilde{Q}_3^{\dagger} \tilde{B} t_L - \frac{2g_Y}{3} \tilde{t}_R^{\dagger} \tilde{B} t_R\right) + \left(\mu \tilde{H}_u \tilde{H}_d + h_t \tilde{Q}_3 \tilde{H}_u t_R^{\dagger} + h_b \tilde{Q}_3 \tilde{H}_d b_R^{\dagger}\right)$$

 $\widetilde{t_1} \approx \widetilde{t_R}$ degenerate with LSP

 $\widetilde{t_1} \approx \widetilde{t_L}$ would make $\widetilde{b_L}$ excluded

A large A_t is favored: enhance m_h & bosonic decay branching raito

ZK, Jinmian Li & Mengchao Zhang, EPJC 2017

Decays of \tilde{Q}_3 : bosonic modes

$$\begin{split} \Gamma(\tilde{b}_1 \to \tilde{t}_1 W) &\approx \frac{g_2^2 \cos^2 \theta_{\tilde{t}}}{32\pi} \frac{m_{\tilde{b}_1}^3}{m_W^2} \\ \Gamma(\tilde{t}_2 \to \tilde{t}_1 Z) &\approx \frac{g_2^2}{\cos^2 \theta_W} \frac{\sin^2 2\theta_{\tilde{t}}}{256\pi} \frac{m_{\tilde{t}_2}^3}{m_W^2} \\ \Gamma(\tilde{t}_2 \to \tilde{t}_1 h) &\approx \frac{g_2^2 \cos^2 2\theta_{\tilde{t}}}{64\pi} \frac{m_t^2}{m_W^2} \frac{A_t^2}{m_{\tilde{t}_2}^2} \end{split}$$

maximal LR stop mixing \Leftrightarrow large A_t

The heavier mother particles

The bosonic modes can easily beat the fermionic modes like $\tilde{b}_1 \rightarrow b \tilde{\chi}^0$

ZK, Jinmian Li & Mengchao Zhang, EPJC 2017 A new probe to quasi-natural compressed SUSY

benchmark points

@14TeV & 100/fb LHC

	$m_{\tilde{t}_2/\tilde{b}_1} \sim 800 \ { m GeV}$				$m_{\tilde{t}_2/\tilde{b}_1} \sim 1000 \text{ GeV}$				$\mathcal{L}=100~{ m fb}^{-1}$				
	T1BC	T14B	T1BW	T1TN	T1BC	T14B	T1BW	T1TN		9			
$m_{\tilde{t}_1}/\text{GeV}$	518	533	533	533	574	517	517	517		8	T1BC (1000)		
$m_{\tilde{t}_2}/{ m GeV}$	810	826	826	826	993	984	984	984		П	T14B (1000) - T1BW (1000) -		
$m_{\tilde{b}_1}/\text{GeV}$	774	821	821	821	977	968	968	968		1	T1TN (1000) - T1BC (800)		
$m_{ ilde{\chi}_1^0}/{ m GeV}$	470	454	383	343	471	434	374	334	nce	6	$T_{14B}^{(300)} = T_{14B}^{(300)} = T_{14B}^{($		
$m_{ ilde{\chi}^0_2}/{ m GeV}$	475	2000	2000	2000	476	2000	2000	2000	fica	5	$\begin{array}{c c} T1BW (800) - \\ T1TN (800) - \\ \end{array}$		
$m_{\tilde{\chi}_1^\pm}/{ m GeV}$	472	2000	2000	2000	472	2000	2000	2000	digni	4			
$\operatorname{Br}(\tilde{t}_2 \to h\tilde{t}_1)$	0.163	0.399	0.393	0.389	0.204	0.502	0.501	0.500	01				
$\operatorname{Br}(\tilde{t}_2 \to Z\tilde{t}_1)$	0.330	0.526	0.518	0.514	0.219	0.486	0.485	0.484		3			
$\operatorname{Br}(\tilde{b}_1 \to W\tilde{t}_1)$	0.621	0.963	0.954	0.949	0.431	0.988	0.987	0.986		2			
$\operatorname{Br}(\tilde{t}_1 \to b \tilde{\chi}_1^{\pm})$	1.0	0	0	0	1.0	0	0	0		1			
$Br(\tilde{t}_1 \to bW^{(*)}\tilde{\chi}_1^0)$	0	1.0	1.0	0	0	0.882	1.0	0		-0	0.8 -0.6 -0.4 -0.2 0 0.2 0.4		
$\operatorname{Br}(\tilde{t}_1 \to t \tilde{\chi}_1^0)$	0	0	0	1.0	0	0	0	1.0			BDT Cut		

Why boosted Higgs bosons?

Higgs may be the new physics messenger

The faster Higgs may signal the higher new physics

Equilibrium
heoremhZWcan be violated
beyond SMPure hadronic but
larger branching
ratio & 2b-taggingHard leptons but
with suppressed
branching ratios

ZK, Jinmian Li & Ko.P, PRL,PRD 2016 Boosted di-Higgs+MET from seesaw

seesaw with nonsterile RHNs: well motivated in the extensions with B-L and LR gauge symmetries

$$-\mathcal{L}_X = \frac{1}{2} M_X^2 X_\mu X^\mu + g_N \overline{N_R} \gamma_\mu N_R X^\mu + g_q \bar{q} \gamma_\mu q X^\mu,$$

$$-\mathcal{L}_\phi = \frac{1}{2} m_\phi^2 \phi^2 + \frac{\lambda_N}{\sqrt{2}} \phi \overline{(N_R)^c} N_R + \sin \theta \frac{\alpha_s}{m_t} \phi GG.$$

Larger production rate via resonant enhancement

Open TeV seesaw region at colliders

without invoking large left-right neutrino mixing which is supposed to be very small

ZK, Jinmian Li & Ko.P, PRL,PRD 2016

 $M_{Z'}/(\text{GeV})$

Boosted di-Higgs+MET from seesaw

 $M_X/(\text{GeV})$

ZK, Jinmian Li etc., PRD, 2013

Boosted X from the natural NMSSM

ZK, Jinmian Li etc., PRD, 2013

Boosting test of the 3 CP-even Higgs bosons

Higgs to Higgs: decay chain $H_3 \rightarrow H_2(125)H_1$ (boosted)

$\sigma_{H_3} = 0.2 \left(\frac{C_{3,g}}{0.4}\right)^2$	$\frac{1}{2} \frac{\mathrm{Br}(H_3 \to H_1 H_2)}{20\%}$	$\frac{\mathrm{Br}(H_1 \to b\bar{b})}{90\%}$
$\frac{\text{Br}(H_2 \to W)}{28\%}$	$\frac{V_{\ell}W_h)}{10\mathrm{pb}}\mathrm{p}$	b,

@ 14TeV 500/fb LHC

	$m_{H_1}(\text{GeV})$	$m_{H_3}(\text{GeV})$	σ (fb)	$\frac{S}{\sqrt{S+B}}$
B1	100	300	70	0.81
B2	65	300	50	3.84
B3	98	400	25	4.73
B4	65	400	20	7.68
B5	100	600	2	2.79
B6	65	600	2	4.99

Sub TeV H_3 & sub 0.1 TeV H_1 may have good prospect

The new di-photon excess???

Conclusions

New physics may have been pushed into the TeV region by the null LHC new physics searches

Then, boosted t/W/Z/h or h(X) may provide signs to those new heavy resonances

Good examples: heavier stops/right-handed neutrino/heavy Higgs

Thank you