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I. INTRODUCTION

• In most composite models, the scalar fields are nonlinear realized;

• We should carefully check the normalization in the scalar sector and obtain exact

Goldstone fields in such kind of models;

• The vertices may also be different comparing with the naively calculation results;

• In this talk, we take the simplest little Higgs (SLH) model as an example, to discuss

the standard procedure above, and the improved properties of this model—differences

from the previous results about η vertices, which have already existed for over ten

years. [W. Kilian, D. Rainwater, and J. Reuter, Phys. Rev. D71 (2005) 015008; etc.]

https://inspirehep.net/record/664639
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II. A BRIEF REVIEW OF SLH MODEL

SLH model is one of the little Higgs models to solve the “little hierarchy” problem:

• Global Symmetry breaking (SU(3)× U(1))2 → (SU(2)× U(1))2 at scale f � v;

• Gauge symmetry breaking SU(3)× U(1)→ SU(2)L × U(1)→ U(1)em;

• Ten Nambu-Goldstone boson are generated, in which eight are eaten by the massive

gauge bosons, and two are left as physical scalars;

• One (h) is a 0+ scalar, we treat it as the 125 GeV Higgs, the other (η) is a 0− scalar;

• The two scalar triplets Φ1,2 transformed as (1,3) and (3,1) respectively.

[D. E. Kaplan and M. Schmaltz, JHEP 0310 (2003), 039; etc.]

https://inspirehep.net/record/612997


4

• The nonlinear realization of the scalar triplets:

Φ1 = eiΘ′eitβΘ

 01×2

fcβ

 , Φ2 = eiΘ′e−iΘ/tβ

 01×2

fsβ

 ;

with the definitions of the matrix fields

Θ ≡ 1

f

ηI3×3√
2

+

 02×2 φ

φ† 0

 , and Θ′ ≡ 1

f

G′I3×3√
2

+

 02×2 ϕ

ϕ† 0

 .

• η is the pseudoscalar field; φ ≡
(
(vh + h− iG)/

√
2, G−

)T
is the usual Higgs doublet;

G′ and ϕ ≡ (y0, x−)T are all eaten by the five heavy gauge bosons.
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• The covariant derivative term (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2);

• Dµ ≡ ∂µ − iGµ, where the gauge field matrix

G =
A3

2


1

−1

+
A8

2
√

3


1

1

−2

+
1√
2


W+ Y 0

W− X−

Ȳ 0 X+

+
tWB

3
√

1− t2W/3
I

• θW is the electro-weak mixing angle, W± and X± are charged, Y (Ȳ ) = (Y1± iY 2)/
√

2

• A3, A8, B are linear combinations of γ, Z, Z ′ at leading order of (v/f);

• Z,Z ′, Y 2 have further mixing beyond LO of (v/f).
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• h can acquire its mass through loop corrections, and η is still massless;

• We now don’t consider the η mass term (−µ2Φ†1Φ2 + H.c.);

• The Yukawa lagrangian with anomaly free embedding: F. del Águila, J. I. Illana, and

M. D. Jenkins, JHEP 1103 (2011) 080; O. C. W. Kong, Report No. NCU-HEP-k009.

Ly = iλjNN̄R,jΦ
†
2Lj −

iλjk`
Λ

¯̀
R,j det (Φ1,Φ2, Lk)

+i
(
λat ū

a
R,3Φ†1 + λbt ū

b
R,3Φ†2

)
Q3 − i

λb,j
Λ
d̄R,j det (Φ1,Φ2, Q3)

+i
(
λad,nd̄

a
R,nΦT

1 + λbd,nd̄
b
R,nΦT

2

)
Qn − i

λjku
Λ
ūR,j det (Φ∗1,Φ

∗
2, Qk)

• Fermion doublets are enlarged to triplets, L = (νL, `L, iNL)T , Q1 = (dL,−uL, iDL),

Q2 = (sL,−cL, iSL), Q3 = (tL, bL, iTL).

https://inspirehep.net/record/884464
http://arxiv.org/abs/hep-ph/0307250
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Calculate the useful η couplings:

• If naively perform it with the degrees of freedom in the triplets Φ1,2, we will obtain

• The SM ηqq̄ vertices: L ⊃ ±(mq/f)(tβ − t−1
β )q̄γ5qη;

• The anti-symmetric Zhη vertex: L ⊃ (mZ/
√

2f)(t−1
β − tβ)(h∂µη − η∂µh)Zµ;

• Both gave a O(v/f) vertex which induced rich interesting phenomenology about η;

• However, the results are totally wrong since the naive treatments are careless about

most two-point transitions: including the non-canonically normalized kinetic terms,

gauge boson-Goldstone transitions, and gauge fixing terms;

• The formalism must be improved if we want to remove all the two-point transitions.
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III. IMPROVED FORMALISM OF THE SLH MODEL

The key points:

• The CP-odd scalar sector is not canonically normalized;

• We must find a basis to remove all cross-terms in the scalar kinetic part of the la-

grangian, the two point function must have the form iδ2Γ/δSaδSb = −i(pµapb,µδab−mab);

• The gauge fixing term must cancel all the two-point transitions like Vµ∂
µS;

• No additional two-point transitions generated from these operations, for example, no

additional cross-terms arising from the gauge boson kinetic parts;

• All sectors can be diagonalized together.
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• First, calculate the non-canonically normalized scalar kinetic terms:

L ⊃ (Kij/2)∂µGi∂
µGj where Kij 6= δij, Gi denotes one of (η,G,G′, y2);

• Consider the linear space spanned by the four Gi, we need a new basis Si, in which

the fields are canonically normalized: L ⊃ (δij/2)∂µSi∂
µSj;

• Define the inner product 〈Si|Sj〉 = δij, it is easy to show 〈Gi|Gj〉 = (K−1)ij;

• This relation is very useful in the following procedure.
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• Second, calculate the gauge boson-scalar two point transition: they come from the

VEVs of Φ1,2 and can be parameterized as V µ
p Fpi∂µGi, where F is a 4× 3 matrix;

• It must be canceled by the gauge fixing terms thus LG.F. ⊃ (∂µV
µ
p )FpiGi;

• Third, try to find the exact Goldstone fields, define another basis Ḡp = FpiGi, we have

the inner product 〈η|Ḡp〉 = 0 and 〈Ḡp|Ḡq〉 = (M2
V )pq, where M2

V is the mass matrix in

the basis (Z,Z ′, Y 2);

• We can use a matrix R to diagonalize M2
V as (RM2

VRT )pq = m2
pδpq;

• It is natural to define G̃p = RpqḠq/mp = (RF)piGi/mp thus 〈G̃p|G̃q〉 = δpq.
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• Now we have a canonically normalized basis (η/
√

(K−1)11, G̃p);

• The two-point transition becomes mpṼ
µ
p ∂µG̃p with Ṽ µ

p = RpqVq; thus we choose the

gauge fixing term LG.F. = −
∑

p(1/2ξp)(∂µṼ
µ
p − ξpmpG̃p)

2;

• G̃p is the corresponding Goldstone eaten by Ṽp with its mass
√
ξpmp;

• Comparing with the naive treatment: η mass eigenstate is proportional to η, however,

all the three original Goldstone degrees of freedom (G,G′, y2) contain η component;

• When we consider the interactions including η, we must consider the same interaction

with (G,G′, y2) together from the original lagrangian.
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η vertices calculation:

• Divide F into two parts: F = (f̃ , F̃), where f̃p = Fp1 is a 1×3 vector, whose components

are the coefficients of V p
µ ∂

µη transition;

• Thus in Gj, the coefficient of η component is (F̃−1f̃)j;

• Assuming the coefficient of an interaction term including a CP-odd scalar is cGi ;

• The physical coefficient including η is c̃η =
√

(K−1)11

(
cη − (F̃−1f̃)jcj

)
;

• Any vertex should be calculated following the procedure above;

• The method can be generalized into other nonlinear realized models.
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Updated results including η:

• Zhη: L ⊃ mZ/(2
√

2c2
W t2βv)(v/f)3(h∂µη − η∂µh)Zµ;

• The tree-level vertex appear at O(v3/f 3), gauge boson mixing is also important;

• ηqq̄: L ⊃
∑

q=t,d,s±(imq/
√

2fs2β)(c2β + c2θR)q̄γ5qη, where we choose “−” for t, “+”

for d and s, θR is the right-handed mixing angle between SM and the corresponding

additional quarks;

• No tree level ηff̄ couplings for f = u, c, b, ν, `;

• These updated results would significantly modify the phenomenology of η.
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IV. PARAMETER CONSTRAINTS ON SLH MODEL

• The constraints mainly come from: experimental—LHC direct search, theoretical—

scalar potential analysis, Goldstone scattering unitarity bounds, etc;

• Lower bound on f : LHC direct Z ′ searches [ATLAS Collaboration, JHEP 1710 (2017),

182] showed that f & 7.5 TeV [Y.-N. Mao, arXiv: 1703.10123];

• The result has already become the strictest one, comparing with the electro-weak

precision test constraint [J. Reuter and M. Tonini, JHEP 1302 (2013), 077];

• Scalar potential analysis show: s2β < mT/f and mT < 14.7(f/v)4.24×10−2
TeV;

• Assuming tβ ≥ 1, unitarity bound sets the cut-off scale F =
√

8πcβf .

https://inspirehep.net/record/1609250
https://inspirehep.net/record/1609250
https://arxiv.org/abs/1703.10123
https://inspirehep.net/record/1208695
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• All the appeared particles should appear below F , thus we can set several upper limit

as: f < 84.5 TeV, tβ < 8.9, mT < 18.7 TeV, mZ′ < 47.4 TeV, mη < 1.5 TeV.
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• Take f = 10, 20, 30, 40, 50, 60, 70, 80 TeV for the plots above in order.
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• In this page, we show the tβ(> 1) distributions in the allowed regions as examples for

f = 10, 30, 50, 70 TeV from left to right.
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V. A BRIEF INTRODUCTION TO η PHENOMENOLOGY

mη Domain Decay Channels Domain Production Channels

< 2mπ γγ e+e− → (γ∗,Υ, Z)→ ηγ

2mπ-mΥ γγ, gg, dd̄(ππ), ss̄(KK) e+e− → (γ∗,Υ, Z)→ ηγ

mΥ-mZ γγ, gg, bb̄ (loops) e+e− → (Z(∗), γ∗)→ γ(Z)η, pp→ η, ηη, ηh, ηV.ηg, . . .

mZ-2mt gg, γγ,WW,ZZ (loops) e+e− → ηγ, ηZ, pp→ η, ηη, ηh, ηV, ηg, . . .

> 2mt tt̄ pp→ η, ηη, ηh, ηV, ηg, . . .

• Sorry I and my collaborators cannot finish the calculations before this workshop, so

there are no more details about η properties in this talk.
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VI. CONCLUSIONS AND DISCUSSIONS

• We accidentally noticed the mistakes in previous papers discussing the SLH model,

thus we improved the formalism of the SLH model;

• With this example, we provide the procedure to treat the non-canonically normalized

scalar sector and find the exact Goldstone fields for nonlinear realized models;

• Based on the improved formalism, we recalculated the vertices including η, and ob-

tained the first correct Zhη and ηff̄ vertices in the SLH model (the wrong results

have existed for over ten years);

• We also discussed the allowed parameter regions for the SLH model incidentally;

• According to the updated results, the phenomenology of η must be renewed from head

to foot, we have not finished them so we don’t discuss more details here.
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Advertisement

• More collaborators are welcome on the η phenomenology (but not limited on this

topic), my email address maoyn@ihep.ac.cn; I am also in our workshop Weixin Group,

you can find me through the icon “f” with Parity-violation.

Thank You
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