Garfield Simulation of CGEM

Miao Nannan 2017.07.06

Outline

- Introduction
- Method
- Lorentz Angle
- Electron shift(mean) and size(RMS)
- Primary ionization
- Avalanche & Gain
- Signal (Ongoing)

Introduction

- Garfield is time consuming for the full triple-GEM simulation. So we will simulate the three GEMs separately.
- The incident particle interacts with gas and creates primary electrons.
- For "electron cluster", it refers to the energy loss in a single ionizing collision of the primary charged particle and the secondary electrons produced in this process.

Method

- Software
 - ANSYS: to model & mesh the GEM
 - Garfield++: to simulate electron avalanches
 - ROOT and C scripts: to analyse the data
- Garfield Simulation
 - Gas Mixture: Ar: iC4H10 (90: 10)
 - Avalanche Model: Avalanche Microscopic
 - Particle: 10k orthogonal μ tracks with momentum 1Gev/c for primary electrons simulation. 20k electrons for electron avalanches simulation.
 - Magnetic Field: 1Tesla
 - High voltages on foils : 270V/GEM
 - Field: 1.5/3/3/5 kV/cm (Drift/Transfer1/Transfer2/Induction)

Primary ionization

Total number of electrons and energy loss in drift area (~5mm), is Landau distribution.

Primary ionization

Number of Electrons in a Cluster in drift area (~5mm). For range 20~100, the sampled value from the Landau fit.

Primary ionization

In drift area (~5mm), the produced electron clusters is a Poisson distribution. An Exponential probability gives the distance between two consecutive clusters.

Lorentz Angle

- In each area, simulate 1000 electrons separately in 50 equidistant bins.
- X is the direction which is perpendicular to E and B
- Z is the direction of electric field
- The Lorentz angle can be extracted from the plot

	Drift	Transfer1	Transfer2	Induction	Full area
Lorentz Angle	25.2	10.5	10.5	6.0	16.1
Electric Field (kV/cm)	1.5	3	3	5	

Electron shift(mean) and size(RMS) Simulate 10k electrons in drift area(only drift and diffusion).

Electron shift(mean) and size(RMS) Simulate 10k electrons in transfer1(only drift and diffusion).

Electron shift(mean) and size(RMS)

Simulate 10k electrons in transfer2(only drift and diffusion).

Electron shift(mean) and size(RMS)

Simulate 10k electrons in induction area(only drift and diffusion).

Electron shift(mean) and size(RMS) Simulate 10k electrons in full area(only drift and diffusion).

Avalanche & Gain ----Gem1

- Set an electron 150 μm before the Gem foil and count multiplied electrons 150 μm after the foil.
- Efficient gain: Electrons get through the Gem foil, about 86.9%. It is sampled from a Landau.

Avalanche & Gain ----Gem2

- Set an electron 150 μm before the Gem foil and count multiplied electrons 150 μm after the foil.
- Efficient gain: Electrons get through the Gem foil, about 64.5%. It is sampled from a Landau.

Avalanche & Gain ----Gem3

- Set an electron 150 μm before the Gem foil and count multiplied electrons 150 μm after the foil.
- Efficient gain: Electrons get through the Gem foil, about 65.3%. It is sampled from a Landau.

