ILC status

KEK/LCC Shin MICHIZONO

- The ILC
- KEK's activities
- ILC cost reduction R&D
- World-wide R&D for high-Q and high-G
- staging

ILC Acc. Design Overview (in TDR)

6th IHEP-KEK SCRF Collaboration Meeting (July 15, IHEP)

LCC international structure

ILC Advisory Panel in MEXT

Important Energies in ILC

125 GeV Higgs discovery reinforcing the ILC importance

The Standard Model

ILC Site Candidate Location in Japan: Kitakami

ILC Time Line: Progress and Prospect

ILC status

KEK/LCC Shin MICHIZONO

- The ILC
- KEK's activities
- ILC cost reduction R&D
- World-wide R&D for high-Q and high-G
- staging

ATF/ATF2: Accelerator Test Facility

Develop the nanometer beam technologies for ILC Key of the luminosity maintenance

6 nm beam at IP (ILC)

ATF2: Final Focus Test Beamline

Goal 1:Establish the technique for small beam Goal 2: Stabilize beam position

Damping Ring (~140m) Low emittance electron beam

6th IHEP-KEK SORE 30 GIE Vti S-bandu Electron LINAC (~70m)

Progress in FF Beam Size and Stability at ATF2

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : **37** nm → ILC **6** nm
 - Achieved **41 nm** (2016)

Goal 2: Develop a few nm position stabilization for the ILC collision

- FB latency 133 nsec achieved (target: < 300 nsec)
- positon jitter at IP: 410 → 67 nm
 (2015) (limited by the BPM resolution)

Construction of STF cryomodules

S1- Global Cryomodule Four (+4) 9-cell cavities (2010')

STF tunnel (2011')

STF-2 - Capture Cryomodule Two 9-cell cavities (2012')

Beam operation HPG regulation

STF-2 - CM1+CM2a Cryomodule Eight + Four 9-cell cavities (2014')

8 Cavities Operation by Vector-Sum @31MV/m

8 Cavities were tuned on resonance by piezo, and vector sum operation was done at 31MV/m.

Main equipments in CFF

Clean room 19m x 14m x 5m (Height)

Cleanness ISO 5

Completed in July 2011

Chemical polishiing

Vertical lathe

Press machine

H2443

Surface inspection

Chemical polishiing

CNC vertical lathe (Moriseiki, Japan)

> Microscope (Surface inspection)

EB welding machine (SST, Germany) Max. beam voltage: 150 kV

EBW

6th IHEP-KEK SCRF Collaboration Meeting (July 15, IHEP)

Servo press machine (AMADA, Japan) Max. applying force:1500 kN

Present status of production

- July 2011 Construction of Cavity Fabrication Facility (CFF) is finished.
- Feb. 2012 The first cavity named KEK-0 was fabricated in CFF, and its acceleration gradient attained 29 MV/m.
- Mar. 2014 The second cavity named KEK-1 was finished, and its acceleration gradient attained 36 MV/m.
- April 2014 5 R&D cavities (1-cell & 3-cell) were fabricated,

to June 2015

Feb. 2016 The third cavity named KEK-2 was finished, and its acceleration gradient attained **38** MV/m. April 2016 Fabrication of new R&D cavities and the fourth cavity named KEK-3 are ongoing.

ILC status

KEK/LCC Shin MICHIZONO

- The ILC
- KEK's activities
- ILC cost reduction R&D
- World-wide R&D for high-Q and high-G
- staging

ILC cost reduction R&D

Figure 15.8. Distribution of the ILC value estimate by system and common infrastructure, in ILC Units. The numbers give the TDR estimate for each system in MILCU.

The main fraction of the construction cost is coming from main linac (ML). Thus we focused our cost reduction R&D into ML (superconducting RF technology)

Motivation

Niobium material cost for fabricating SRF cavity cell and end-groups is relatively high. There are 20 kinds of mechanical parts in 9-cell cavity, which shape and the requirement of performance are different, respectively. If the ingot purity and manufacturing method for each part is optimized precisely as well as satisfying the ILC specification shown in the TDR, the cost will be reduced significantly.

<u>Approach</u>

- Optimize the ingot purity with a lower residual resistivity ratio (RRR) with accepting specific residual content.

- Simplify the manufacturing method such as forging, rolling, slicing and tube forming with small loss.

Fabrication of test cavity

Start material: Nb ingot from CBMM, Commercial Grade (Ta: 2000 ppm Max., RRR: not specified

- High Ta & Medium or High RRR sheet: for cells
- High Ta & Low RRR sheet: for stiffener
 - Forging and rolling to sheet from the start material
- High Ta & Low RRR tube: for beam tube

Forging and manufacture of seamless tube with good formability for burring from the start material

A-2. SRF cavity fabrication for high gradient and high Q (with a new surface process provided by Fermilab)

- High Q cavity enables the decrease in number of cryogenics leading to the cost reduction.
- FNAL researcher (A. Grassellino) found the new cavity preparation recipe having high Q and high gradient.
- Demonstrate N2-infusion (High-gradient and High-Q) technology with 9-cell-cavities.

Design optimization for High Q and High Gradient op.

ILC status

KEK/LCC Shin MICHIZONO

- The ILC
- KEK's activities
- ILC cost reduction R&D
- World-wide R&D for high-Q and high-G
- staging

R&D Plans at worldwide Labs

	On- going	R&D: ML Cavity	Assoc. System	Cryomodule	RF
Fermilab	LCLS-II	N ₂ -infusion (HQ-HG)	Coupler		
JLab	LCLS-II	Nb-LG/FG (Ingot-sliced/rolled) , LSF cavity, N ₂ -infusion			
DESY	EXFEL	N ₂ -infusion Nano-Lab study		High- performance CM	
INFN- LASA	ESS	Nb-LG/FG systematic study for ESS			
CEA/ CNRS- LAL	IFMIF ESS, SARAF	Vertical EP (VEP), N ₂ -Infusion	Magnetic shield Coupler	Assembly robotizing	
KEK	STF	Nb-LG/FG N ₂ -infusion	Coupler, Tuner Crab. C.		Marx M.
IHEP	ADS	N ₂ -infusion, Industrialization		Industrialization	Marx M. h.e. Klystron
CERN	HL-LHC Hi-Isolde	Thin-film (Nb on Cu)	Coupler		h.e. Klystron
TRIUMF	ISAS-II, ARIEL	VEP, muSR			
Cornell		N ₂ -infusion, VEP 6th IHEP-KEK SCRF Collaboration	on Meeting (July 15, IHEP)		25

9-cell cavity results, 120C infusion

S. Aderhold (FNAL) at AWLC17

- Same extraodinarily high Q as single cells
- Highly reproducible
- CAV0018 limited by FE -> might have gone even higher in gradient

6/27/17

S. Aderhold (FNAL)

Nitrogen role in N-infusion

- Higher N₂ background compared to noninfused samples
- N₂ enriched layer below native oxide
- SIMS data suggests that performance is related to the first nm from the RF surface

No nitride formation at the RF surface

15

A. Grassellino et al., arXiv:1701.06077 (accepted for publication by SUST)

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

N-infusion at Cornell, 9-cell

6th IHEP-KEK SCRF Collaboration Meeting (July 15, IHEP)

Will be analyzed,,,

ff97@cornell.edu, pnk9@cornell.edu

AWLC2017, SLAC, 27June2017

RECENT WORK AT JLAB

Comparison of tests before/after treatment

M. Wenskat (DESY) at AWLC17

6th IHEP-KEK SCRF Collabora Marc Menskati AV LG2017 - Stanford | 27.6.2017 | Slide 8

0.7

ILC status

KEK/LCC Shin MICHIZONO

- The ILC
- KEK's activities
- ILC cost reduction R&D
- World-wide R&D for high-Q and high-G
- staging

staging option name

Example of staging plan

Example of luminosity and energy evolution

new scenarios: H-20-CD (-δ_{BS})

Option C:

(same scenario for option D)

lumi upgrade after ∫Ldt ~ 500 fb⁻¹ (double bunches)

energy upgrade after ∫Ldt ~ 2 ab⁻¹ at 250 GeV in ~15 (11)y

ILC500 starts with x2 bunches directly

save ~4y with δ_{BS} at AWLC17

Junpin Tian (U.Tokyo) at AWLC17

ILC SRF Global Manufacture/Integration Model

Thank you for your attention