INSTITUTE OF HIGH ENERGY PHYSICS 12

CEPC High Q Cavity Study

P. Sha, J.Y. Zhai, H.J. Zheng, B.Q. Liu, C. Dong, X.Y. Zhang, Z.H. Mi, S. Jong, T.X. Zhao, Z.Q. Li 2017.07.07, IHEP CAS

Contents

- 1. Introduction
- 2. N-doping, N-infusion
- 3. Nb₃Sn and Fe-based superconductor film
- 4. 650 MHz cavity for CEPC main ring
- 5. 1.3 GHz cavity for CEPC booster
- 6. Summary

CEPC Cavity Specification

	New!				
Cavity	Vertical test		Horizo	ntal test	Amount
650 MHz 2- cell Cavity	4E10 @	22 MV/m	2E10 @	16 MV/m	336
1.3 GHz 9- cell Cavity	3E10 @ 25 MV/m		2E10 @	20 MV/m	160
Similar as E-XFEL, LCLS-II, ILC		Ve	ry high	•	

Contents

- 1. Introduction
- 2. N-doping, N-infusion
- 3. Nb₃Sn and Fe-based superconductor film
- 4. 650 MHz cavity for CEPC main ring
- 5. 1.3 GHz cavity for CEPC booster
- 6. Summary

High Q cavity through N-doping

- Research Content: Increasing Q₀(at high Electric field) of SC cavity through N-doping, Nb₃Sn.....
- Target: $Q_0=4e10@E_{acc}=22MV/m$ (650MHz cavities for vertical test at 2K)

N-doping for PIP-II 650 MHz single-cell cavity

N-doping application: LCLS-II

国科学院高能

	VTS		рСМ			
Cavity	Eacc [MV/ m]	Q₀ (2K) @16MV/m	Max Gradient Reached * [MV/m]	Usable Gradient ** [MV/m]	FE onset [MV/m]	Q₀ (2K) @ 16MV/ m***
TB9AES021	23	3.1E+10	19.6	18.2	14.6	2.6E+10
TB9AES019	19.5	2.8E+10	17	16.8	15.6	2.6E+10
TB9AES026	21.4	2.6E+10	17.3	17.2	No FE	2.7E+10
TB9AES024	22.4	3.0E+10	16.5	16.0	No FE	2.5E+10
TB9AES028	28.4	2.8E+10	14.9	13.8	11.5	2.4E+10
TB9AES016	18	2.8E+10	16.7	16.7	14.5	2.9E+10
TB9AES022	21.2	2.8E+10	17.4	17.1	12.7	3.2E+10
TB9AES027	22.5	2.8E+10	16.8	16.6	13.8	2.5E+10
Average	22.1	2.8E+10	17.0	16.6	14.7	2.7E+10
Total Voltage	176.4		136.2	132.5		

Immediate application: LCLS-II, 2.7e10@16MV/m.

Preliminary results for 1st LCLS-II cryomodule (FNAL)

N-doping recipe adopted by LCLS-II

- 1. 800°C/900 °C anneal 3 hours for Hydrogen degas
- 2. Nitrogen injection 2 minutes at ~3.5 Pa
- 3. Nitrogen anneal 6 minutes
- 4. Nature cooldown

Two steps of N-doping at IHEP

- 1st step: N-doping of Nb sample, Secondary Ion Mass Spectrometry (at Tsinghua University)— N concentration within Nb surface increase or not?
- 2nd step: cavity N-doping, Electric Polishing, vertical test Q increase or not?

N-doping of Nb samples at IHEP

- The furnace is equipped with diffusion pump, which is not oil-free and dirty.
- Many times of Nb sample N-doping experiments, SIMS results show they all failed.

N-doping of Nb samples at OTIC

- Oil-free pumping system: two COOLVAC10000 CL-V (DN500 ISO-K, N₂ pumping speed 10 000l/s) cryo-pumps by Leybold, one roots pump (1200L/S), one screw pump.
- The heater is made by **Tantalum**, not molybdenum. N-infusion isn't allowed, because people worry that N_2 injection at 120C may harm the heater.

SIMS

- □ N and H are key elements of N-doping, so SIMS is adopted to study their distribution along the depth in the Nb surface.
- □ The SIMS machine we use is made by ION-TOF GmbH (Germany). The type is TOF.SIMS 5-100.
- \Box 1st ion beam: Bi3++, 1keV, 45deg inject, scan area 100*100 um.
- □ Sputtering beam: Cs+, 1keV, 45deg inject, Sputtering speed=0.14nm/s for SiO₂ (14 um need 28 hours).

Nb Sample (10*10mm)

SIMS ongoing

SIMS experiments at Tsinghua University

相是行為位

不得到你

SIMS result after N-doping at OTIC

Intensity of NbN, CsN also increase after Ndoping.

After ~5 um EP, N, NbN and CsN all disappear.

SIMS for N-doped sample(~100um)

Analyzed by ULVAC

Total of three measurements

What does N treatment do? N depth profiles by SI

Figure 6: SIMS results from a sample treated with TE1-4 and TE1-5. Single-cell cavities are also included for reference.

100

1000

10

Depth [µm]

Cornell N-Doped Cavities

0.1

0.01

What does N treatment do? N depth profiles by SIMS

INSTITUTE OF HIGH ENERGY PHY

中国科学院高能物程研究所

Contents

- **1.** Introduction
- 2. N-doping, N-infusion

3. Nb3Sn and Fe-based superconductor film

- 4. 650 MHz cavity for CEPC main ring
- 5. 1.3 GHz cavity for CEPC booster
- 6. Summary

Nb₃Sn

- □ Niobium cavity coating with Nb_3Sn can work at 4.2K, which save much cost than 2K.
- \square Nb₃Sn is predicted to have 2x magnetic field limit of niobium.

Cornell Nb₃Sn Coating Furnace

Fe-based Superconductor for SRF Cavity

Fe(TeSe) Thin Film Study at IHEP

- □ SrTiO₃ substrate with Nb doping (for better electrical conductivity)
- Preparation method: Pulsed Laser Deposition (PLD)
- Research on oxidation of Fe(TeSe) thin film
- □ Next step: make proper Fe-based material for SRF application.

Fe(TeSe) thin film sample

PLD Equipment

Chinese. Phys. B Vol. 25, No. 9 (2016) 097402

Rs measurement of film

之院高位

Contents

- **1.** Introduction
- 2. N-doping, N-infusion
- 3. Nb3Sn and Fe-based superconductor film

4. 650 MHz cavity for CEPC main ring

- 5. 1.3 GHz cavity for CEPC booster
- 6. Summary

650 MHz Single Cell Cavity Test before N-doping

ര്

- Old RF design: $B_p / E_{acc} = 4.75$ mT/(MV/m)
- Shielded dewar, remnant magnetic field 20 mG. Additional magnetic shield around cavity.
- Fine grain, 130um BCP + 3 h 750 C annealing + 30um BCP + 120 C bake 48 h

RF design of 650MHz 2-cell cavity

Parameters	Value	
$R/Q(\Omega)$	212.731	F
G	284.113	ľ
Ep/Eacc	2.38	
Bp/Eacc	1 17	
[mT/(MV/m)]	4.1/	

	P (W) (U=1J)	各个法兰面的Qe
Port 1	0.001867	2.19E12
Port 2	0.001352	3.02E12
Port 3	0.005441	7.51E11
Port 4	0.003435	1.19E12
Port 5	0.003320	1.23E12

Qe (all ports) : 2.65E+11. If Q0 = 4E10, then Q0 (measured) decrease to 3.48E10.

df/dp simulation

File: 650MHz 2cell_4mm_stifening_R108mm-LHe vessel

Mechanical analysis

- df/dp
 - -68.7 Hz/mbar
 - The stress under 2 bar (44.5 MPa)
- Tuning
 - Tuning sensitivity s: 310 kHz/mm
 - Stiffness k: 16001N/mm
- LFD

Fabrication

A prototype of 650 MHz 2-cell cavity has begun fabrication at IHEP factory.

Contents

- **1.** Introduction
- 2. N-doping, N-infusion
- 3. Nb3Sn and Fe-based superconductor film
- 4. 650 MHz cavity for CEPC main ring
- 5. 1.3 GHz cavity for CEPC booster
- 6. Summary

1.3 GHz cavity for CEPC booster

- \Box 1st, high gradient, 35MV/m at May 2018.
- \Box 2nd, high Q.
- □ Tesla type: Single-cell ----- 2-cell ----- 9-cell

6. Summary

- N-doping collaboration: N-doping related experiments of Nb samples and 1.3GHz (650 MHz) cavities both at KEK and IHEP. Those include Ndoping/N-infusion in furnace at IHEP or KEK, material analysis (SIMS, TEM, SEM, XPS...) at IHEP or KEK, surface process and vertical test of cavity at KEK.
- □ We've already two 650MHz single-cell cavities for N-doping on hand now, which have received BCP and vertical test at IHEP. We can send the 650MHz Solid state amplifier (>300W) to KEK for vertical test, too.
- □ We've several 1.3 GHz single-cell cavities (Tesla-type) on hand. They can all be shipped to KEK for N-doping and vertical test.
- □ In late 2016, one 1.3 GHz 9-cell cavity received surface process and vertical test at KEK, which reach 8e9@24MV/m_o

6. Summary

Low Q_0 at low field TESLA cavity $G = 271 \Omega$ @ 1MV/m $Q_0 = 1.19E10$ @ 1.93 K $(R_{BCS}$ @ 1.93 K = 8.2 $n\Omega$) $Q_0 = 1.34E10$ @ 1.73 K $(R_{BCS}$ @ 1.73 K = 3.2 $n\Omega$)

6. Summary

- Nb cavity coating with Nb₃Sn: high temperature coating technique exchange, material analysis (SIMS, TEM, SEM, XPS...) at IHEP or KEK, surface process and vertical test of cavity at KEK.
- Fe-based superconductor: make film (IHEP), material analysis (SIMS, TEM, SEM, XPS...) at IHEP or KEK, measurement of T_C, H_{C,RF}, Rs at KEK. Cavity coating with film is difficult nowadays.

INSTITUTE OF HIGH ENERGY PHYSI

Thanks for your attention!