

SINGLE TRACK SIMULATIONS

First results for muons, protons and kaons

<u>XXXX</u>

I. Garzia, Università degli studi di Ferrara

Single track simulation

GOAL: debug the first version of the software. Cannot be used yet to draw conclusions on the performances of the CGEM

- CGEMBoss software 6.6.5.b and Boss version 665p01
- All detectors included in the simulation
- "fixpt" generator used to generate single particle tracks
- 10000 protons, muons and kaons
 - pt=(0.1, 0.15, 0.2, 0.3, 0.7) GeV/c
 - -0.93<cos(theta)<0.93
- Difference in Reconstruction:
 - 665p01: #include "\$MDCXRECOROOT/share/jobOptions_MdcPatTsfRec.txt" (Runge-Kutta)
 - CGEMBoss: #include "\$MDCXRECOROOT/share/jobOptions_MdcPatTsfRec_NoRK.txt"
- Observables:
 - pt reco after and before the Kalman fit
 - pt reco vs. theta after and before the Kalman fit
 - POCA after and before the Kalman fit
 - dr and dz (helix parameters) resolutions

NOTE

• CGEMBoss: the observables before the kaman fit are the results of combination between CGEM and ODC. This means that cannot directly compare these variables

Muons: pt reco

Muons: POCA

Observation from the previous CGEM meeting

	HepVector a = mdcTrk->helix();
	<pre>HepSymMatrix Ea = mdcTrk->err();</pre>
	HepPoint3D point0(0.,0.,0.); // the initial point for MDC rec.
	<pre>HepPoint3D IP(xorigin[0],xorigin[1],xorigin[2]);</pre>
	<pre>VFHelix helixip(point0,a,Ea);</pre>
	helixip.pivot(IP);
POCA:	<pre>HepVector vecipa = helixip.a();</pre>
	<pre>double Rvxy0=(vecipa[0]); //the nearest distance to IP in xy plane</pre>
variable	<pre>double Rvz0=vecipa[3]; //the nearest distance to IP in z direction</pre>
used up to	<pre>double Rvphi0=vecipa[1];</pre>
now	m_rvxy0=Rvxy0;
ΠΟΨ	m_rvz0=Rvz0;
	m_rvphi0=Rvphi0;

if(fabs(Rvz0) >= 10.0)	continue;
<pre>if(fabs(Rvxy0) >= 1.0)</pre>	<pre>continue;</pre>

Variable used by	<pre>RecMdcKalTrack* mdcKalTrk = RecMdcKalTrack::setPidType</pre>	<pre>(*itTrk)->mdcKalTrack(); (RecMdcKalTrack::kaon);</pre>
Liangliang	<pre>m_xyRes = mdcKalTrk->dr() - m_zRes = mdcKalTrk->dz() - m</pre>	mymcdr; nymcdz;

Vertex resolution I

Vertex resolution II

MUONS: summary

Protons

Vertex resolution for protons

PROTONS: summary

- CgemBoss efficiency < Boss efficiency
- Vertex resolution along z direction better for CGEM (by a factor of about 3)
- Good consistency of the vertex resolution in the XY plane for pt > 300 MeV/c

Kaons

Kaons: pt reco

Vertex resolution for kaons

KAONS: summary

- CgemBoss efficiency < Boss efficiency
- Vertex resolution along z direction better for CGEM (by a factor of about 3)
- Good consistency of the vertex resolution in the XY plane for pt > 300 MeV/c

Conleusions

First version of CGEMBoss software

- Single track simulations: useful to identify bugs, problems, and to find possible solutions
- Still a preliminary version
 - the observables are a combination between those from CGEM and ODC
 - Improve the Kalman filter (on implement the RK)
 - Global Hough transformation under development
- Promising results after the comparison between CGEMBoss and Boss 665p01
 - HUGE improvement of the vertex resolution along the z direction
 - about a factor 3
 - observed for muons, kaons, and protons in the full pt range analyzed

To be done:

- Define common observables (pt, vertex resolution, ...) which will be used in all the benchmark physics studies
- Extract the vertex resolution for the physics benchmark channels
- $J \to \pi^+ \pi^- \pi^0$ channel

spares

Muons, pt = 0.5 GeV/c RK and noRK

Check the difference between jobOptions_MdcPatTsfRec.txt and jobOptions_MdcPatTsfRec_NoRK.txt, Boss665p01 (no Inner DC): #include "...jobOptions_MdcPatTsfRec.txt" (STANDARD) Boss665p01(no Inner DC): #include "...jobOptions_MdcPatTsfRec_NoRK.txt" (as for CGEMBoss)

- By using jobOptions_MdcPatTsfRec_NoRK.txt, the distributions are now centered in zero
- Same conclusions also for higher pt