Upgrade VBF H -> $\gamma\gamma$ analysis

IHEP Fangyi Guo, Yu Zhang Physics background

Upgrade LHC at $\sqrt{s} = 14TeV$ has different cross section and performance compared with 13TeV

Do some MC simulation in VBF $H \rightarrow \gamma \gamma$ events to analysis the influences of these differences

MC sample

Row Monte Carlo sample:

Signal: VBF mc15_14TeV.160024.PowhegPythia8_AU2CT10_VBFH125_gamgam.merge.DAOD_T RUTH3.e1337_p2768

Background:

ggH event:

mc15_14TeV.341000.PowhegPythia8EvtGen_CT10_AZNLOCTEQ6L1_ggH125_ga mgam.merge.DAOD_TRUTH3.e5529_p2768

QCD

process:mc15_14TeV:mc15_14TeV.181782.MadGraphPythia8_AU2CTEQ6L1_Ga mmaGammaJetJet.merge.DAOD_TRUTH3.e2473_p2768

Smearing function

Use Upgrade Performance Function

Detector layouts: reference scenario with LoI strips, LoI-VF pixels to η =4.0, sFCal, new BI RPC and sMDT

Average pileup values: $\langle \mu \rangle = \frac{\mathcal{L} \times \sigma_{inel}}{n_b \times f_r} \sim \mathcal{L} = 200$

Electron performance:

- Working point: looseElectron
- Requiring pT>10 GeV, |eta|<2.47, and remove eta crack region [1.37, 1.52]
- including fake electron from HS jet

Photon performance:

- Working point: tightPhoton
- Requiring pT>25 GeV, |eta|<2.37, remove eta crack region [1.37, 1.52]
- Including fake photon from electron, HS jet, PU jet

Smearing function

Muon performance

- tight muon
- Requiring pT>10GeV, |eta|<2.7

Jet performance

 Hard scattering jets and pile up jets all require pT>25GeV, |eta|<4.5, track confirmation

Overlap removal

Remove objects in close region to prevent potential double-counting of objects in the detector

Order:

- 1. Remove electrons within $\Delta R = 0.4$ of any photon
- 2. Remove muons within $\Delta R = 0.4$ of any photon
- 3. Remove jets within $\Delta R = 0.4$ of any photon
- 4. Remove jets within $\Delta R = 0.2$ of any electron
- 5. Remove electrons within $\Delta R = 0.4$ of any jet
- 6. Remove muons within $\Delta R = 0.4$ of any jet

 $\succ H \rightarrow \gamma \gamma + jj \text{ event selection}$ Cut-based selection for $\gamma \gamma + jj$ event

- Number of jets ≥ 2
- Number of photon ≥ 2
- $\frac{pT_{leading photon}}{m_{\gamma\gamma}} > 0.35$
- $\frac{pT_{sub-leading photon}}{m_{\gamma\gamma}} > 0.25$

• 105 GeV <
$$m_{\gamma\gamma}$$
 < 160 GeV

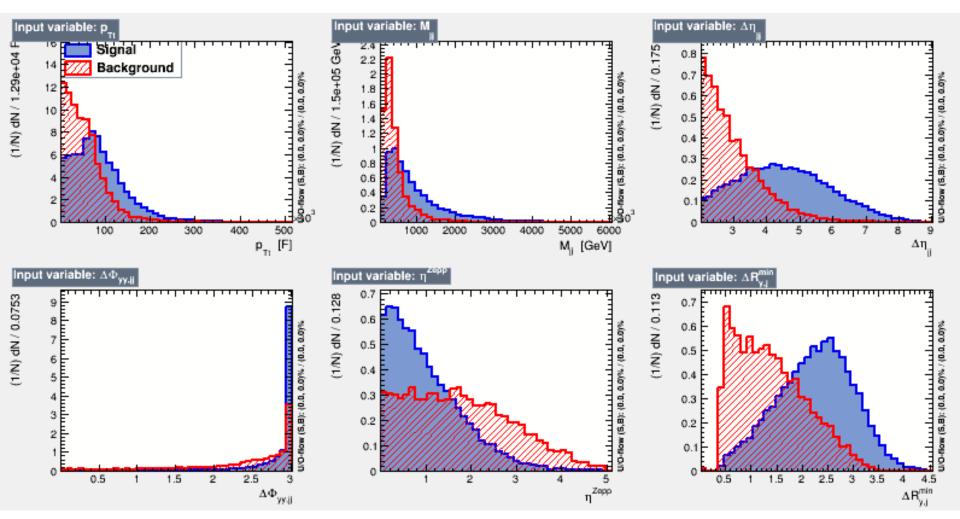
➢Preselection:

 $\Delta \eta_{jj} > 2$, $\left| \eta_{\gamma\gamma}^{Zepp} \right| < 5$ to help BDT focus on VBF event phase-space

➢ BDT training

VBF vs Madgraph background training

type	Sample	Number of events			
Signal	VBF	28721			
Background	MC Madgraph QCD	9063			
we abandoned ggH background in training because of its low cross section*branching ratio The samples are separated into 2 trees apart for training(70%) and testing(30%)					

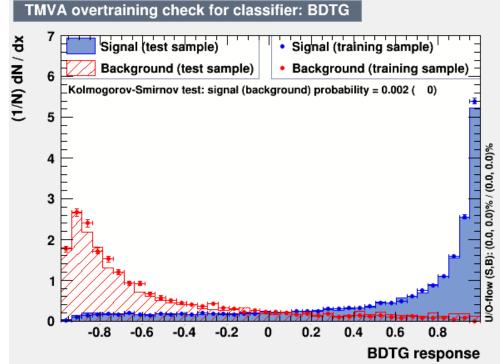

➤Selection efficiency

	VBF	ggH	QCD background
$N_{\gamma} \ge 2$	0.273	0.235	0.215
$\frac{pT}{m_{\gamma\gamma}} \ge 0.35(0.25)$	0.891	0.931	0.795
$105 < m_{\gamma\gamma} < 160$	0.954	0.974	0.262
$N_{jet} \ge 2$	0.423	0.091	0.583
$\Delta \eta_{jj} > 2$	0.836	0.414	0.281
$\left \eta_{\gamma\gamma}^{Zepp}\right < 5$	0.999	0.996	0.992
Total	0.082	0.008	0.007

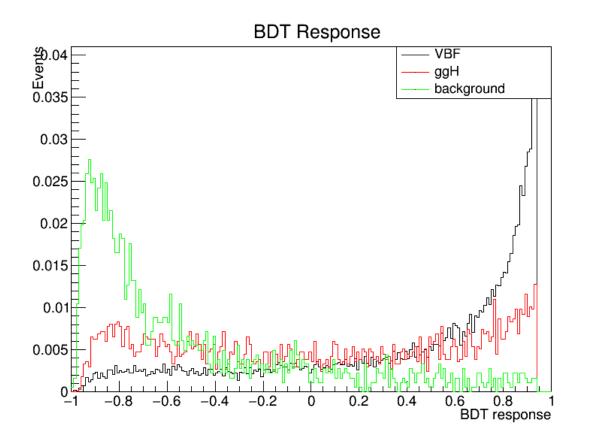
6 BDT training variables

Variable	Description
m_{jj}	Invariant mass of leading 2 jets
$\Delta \eta_{jj}$	Pseudorapidity separation between the leading 2 jets
p_{Tt}	Diphoton pT projected perpendicular to the diphoton thrust axis
$\Delta \phi_{\gamma\gamma,jj}$	Azimuthal angle between the diphoton and dijet systems
$\Delta R_{\gamma,j}^{min}$	Minimum ΔR between leading/subleading photon and the leading/subleading jet
$\eta^{Zepp}_{\gamma\gamma}$	Zeppenfeld variable $\eta_{\gamma\gamma} - (\eta_{j1} + \eta_{j2})/2$

MVA VBF category



Distribution of input variables


BDT training options:

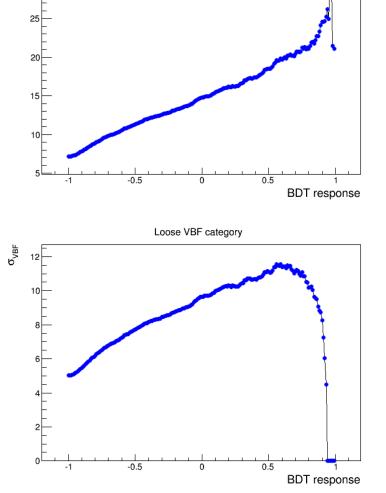
NTrees=900: nEventsMin=50: BoostType=Grad: Shrinkage=0.06: UseBaggedGrad: GradBaggingFraction=0.6: nCuts=20: MaxDepth=4

Output of training

➢BDT out of three samples

Choice of optimal BDTG event categorization

Scan Kcut on BDTG response to maximize VBF significance


$$\sigma_{VBF} = \sqrt{2 \times \left(\left(N_{VBF} + N_{ggH} + N_{bkg} \right) \times \ln \left(1 + \frac{N_{VBF}}{N_{ggH} + N_{bkg}} \right) - N_{VBF} \right)}$$

 N_{VBF} :VBF event number satisfying BDTG>Kcut in $m_{\gamma\gamma}$ window [120,130]GeV N_{ggH} :ggH event number satisfying BDTG>Kcut in $m_{\gamma\gamma}$ window [120.130]GeV N_{bkg} :Madgraph QCD background event number satisfying BDTG>Kcut in $m_{\gamma\gamma}$ window [120,130] GeV

Tight VBF category: determine $kCut_{tight}$ with maximum σ_{VBF} using all events(abandon oscillation nearby 1)

0.94

Loose VBF category: determine kCut in the same way using events with BDTG< $kCut_{tight}$ 0.56

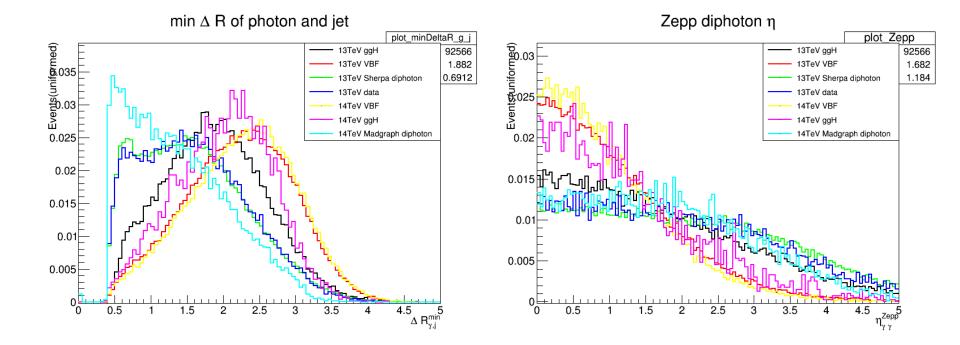
Tight VBF category

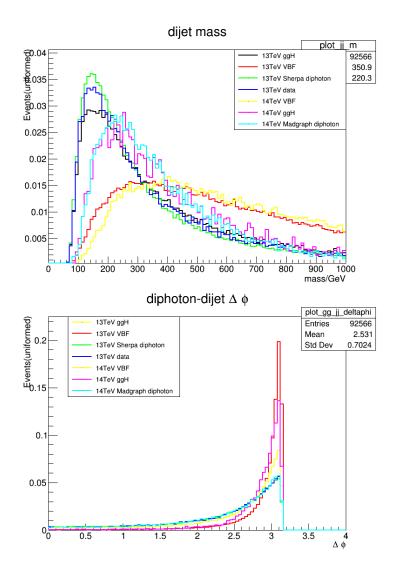
 σ_{VBF}

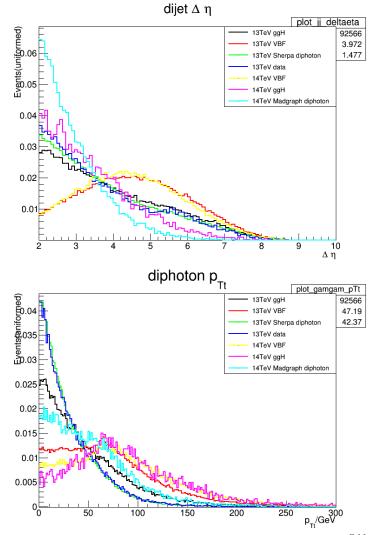
➢ Results

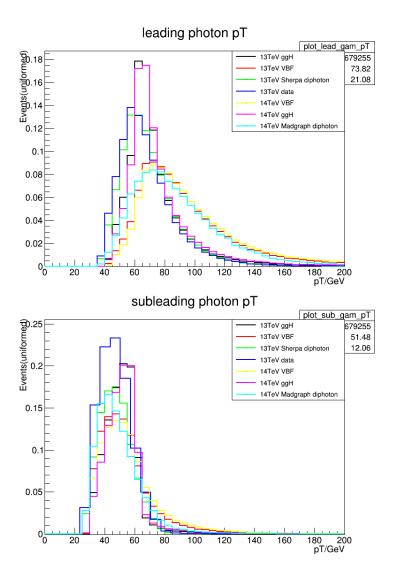
	Loose(0.56 <bdtg<0.94)< th=""><th>Tight(BDTG>0.94)</th></bdtg<0.94)<>	Tight(BDTG>0.94)	
VBF signal	10124.2	8049.89	
ggH	84575.9	25382.1	
background	679113	66435	
VBF purity	10.690	24.080	
VBF significance	11.56	26.19	
combined significance	28.63		

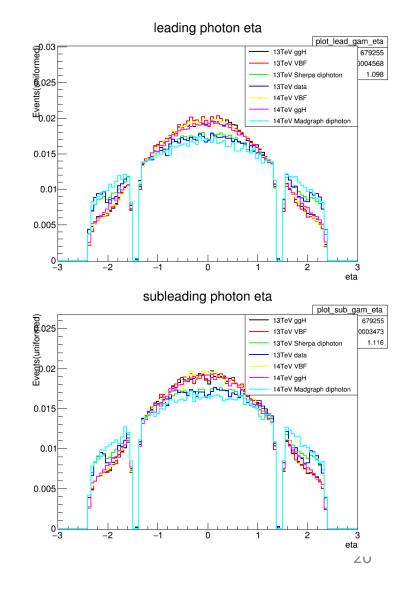
The event number are calculated in mass window [120,130]GeV, weighted to $\int L = 3000 \ fb^{-1}$ luminosity. Combined significance is the quadratic sum of significance in loose and tight VBF categories

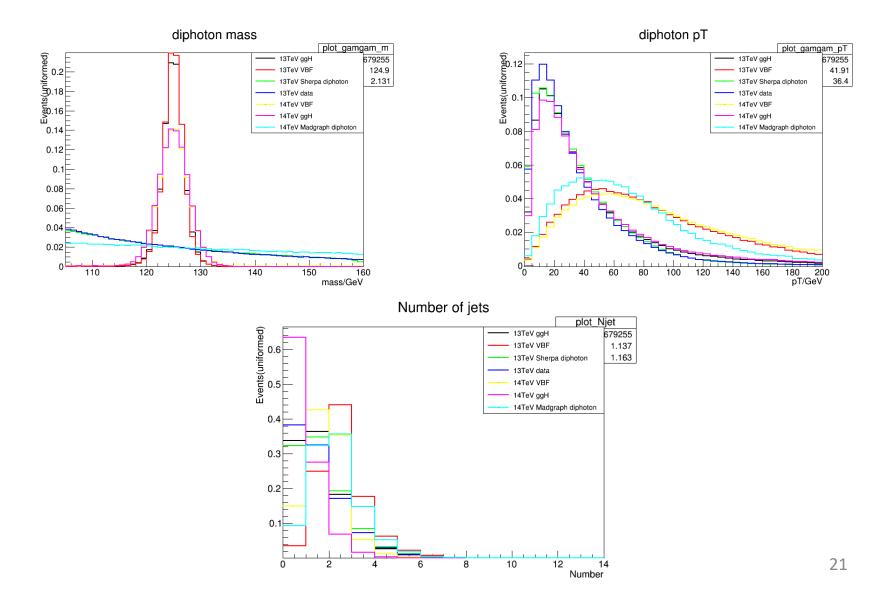

Further work

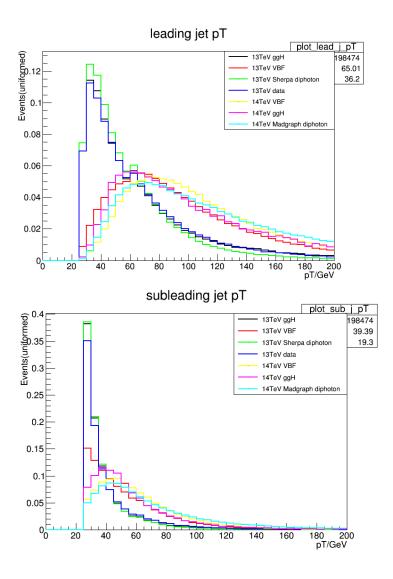

Tuning BDT to seek better performance

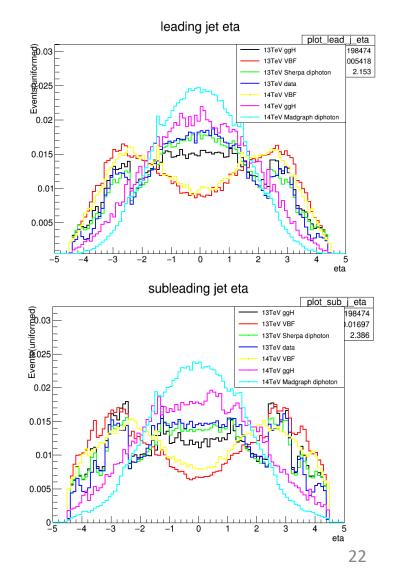

• 2-D BDT to enhance VBF purity

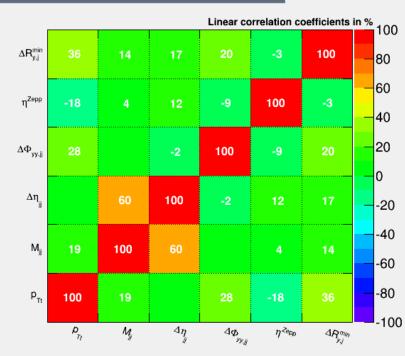

Fit diphoton mass distribution and do other measurements


>Variable distribution(including 13TeV)









BDT variable correlation matrix

Correlation Matrix (background)

Linear correlation coefficients in % 100 $\Delta R_{\gamma,j}^{min}$ 100 80 60 η^{Zepp} 100 40 20 $\Delta \Phi_{yy,jj}$ 100 0 $\Delta \eta_{_{\rm B}}$ 78 100 -20 --40 M_{ii} 100 78 -60 -80 P_{Tt} 100 -100 4ø _{yy,jj} P_T 4η M $\eta^{\geq_{e_{pp}}}$ ARMIN

Correlation Matrix (signal)