

Higgs combination toward CDR

ZhangKaili

IHEP

2017-07-12

Outline

- Motivation
- Model introduction
- Brief look of individual analysis
- Fit Result of $\Delta(Br * \sigma)$ and κ

Combination: motivation

- Old individual analysis
 - Correlations between channels not taken into account
 - Treat ZH backgrounds wrongly
 - One channel's ZH bkg is another channel's signal, should combine together.
 - Systematic uncertainties are difficult to address
- Combination measurement
 - Uniformed, simultaneous fit framework
 - Can easily include necessary correlations/uncertainties
 - Extensibility for making different assumptions

Fit techniques

• Workspace: container of likelihood model and data.

• Input: invariant/recoil mass spectrum, b/c/g template

• POI_{(parameter of interest}): $\sigma * Br$, Higgs coupling κ

• NP_{(nuisance parameter}): function & constrains in model besides POI

- represents uncertainties
- correlated NP share the same name
- currently set $\Delta \sigma = 0.5\%$, $\Delta Lumi = 0.1\%$
- more NP can be introduced in the future.
- PDF for fit:
 - signal: CB ball + Gaussian;
 - bkg: 2rd poly exp
- Algorithm:
 - Minuit2 + Minimize

Currently, with MC sample, we can fit Asimov data to get estimated precisions of $\sigma * Br$, Br, and κ of CEPC.

All the result are **consistent** with pre_CDR's result.

In the future with real data, we can directly use this framework to get these pois' value and uncertainties.

2017/7/23

Fit techniques

- For each channel (like eeqq, $\mu\mu\tau\tau$)
 - Input observables from MC sample.
 - Build Combine S+B Pdf Tot=N_{bb}*Pdf+N_{cc}*Pdf_{cc}+.....+N_{bkg}*Pdf_{bkg}
 - Add μ s on evnets number N_{bb}, could be:
 - When measure $\sigma * Br$, $N_{bb} = N_{bb SM} * \mu_{bb}$
 - When measure Br, $N_{bb} = N_{bb SM}^* \mu_{bb}^* \sigma(ZH)(0.5\%)$
 - When measure κ , $N_{bb} = N_{bb SM}^* \kappa_z^2 * \kappa_b^2$
 - Different channel share the same μ s.
 - Use Combine pdf to make Asimov data
 - Simultaneous fit combine pdf to Asimov Data with different asumptions.

ZH bkg events, like ZZ events in WW channel, will contribute to μ_{ZZ} . If no specific channels known, will only contribute to μ_{global} or κ_{z}

pdf shape is fixed all the time.

No fluctuation made (Unlike ToyMC test)

eebb, mmbb, qqbb, vvbb.....

Channels Table (now 36)

*H->ee/e μ not listed due to no certain ratio.

- *nn/qq+ $\tau\tau$ without bkg.
- *H->zz->vvvv is tagged H->invisible.

Sig	gnal	Observed	Who takes	Last
Ζ	Н	Observed	charge	update
		H->qq		
	bb	7466		
ee	сс	343		
	gg	1039		
	bb	10575		
μμ	сс	538		
	gg	1556	Baiyu	2017 7
	bb	176734	Duryu	2017.7
qq	сс	8268		
	gg	25279		
	bb	70443		
VV	cc	3054		
	gg	9585		
		Н→үү		
11		93	Feng	2015
VV	γγ	309	Treng	2013
qq		822	Yitian	2017.4
	1	H→ll		
μμ		2067		
qq	ττ	36024	Dan	2017.7
nn		12478		
Inc.	μμ	47	Zhenwei	2016.8

Sig	nal	Observed	Who takes	Last
Z	Н	Observed	charge	update
		H->WW		
	μνμν	52		
	evev	36		
μμ	evµv	105		
	evqq	663		
	μvqq	717		
	μνμν	44	Libo	2017.4
	evev	22		
ee	evµv	81		
	evqq	612		
	μvqq	684		
VV	qqqq	9022		

		H->ZZ		
vv	μμϳϳ	190		
μμ	vvjj	209	Yuqian	2016.9
ee	vvjj	72		
]	H->Invisible	e	
qq		202		
ee	vvvv	12	MoXin	2017.7
μμ		22		

Observed=tagged signal after cutflow and in asimov fit range. All events are normalized to $5ab^{-1}$.

Individual analysis intro

bb/cc/gg

- Higgs ~70% to dijets bb/cc/gg
 - Flavor tagging algorithm
- Baiyu, Liboyang's template fit
 - $Z \rightarrow ee \ \mu\mu \ qq \ vv$, $H \rightarrow bb/cc/gg$ are studies.
 - 2D fit, with dijets' b/c likeness
 - In $Z \rightarrow ee \ \mu\mu \ qq \ vv$, Tot=bb+cc+gg+bkg_{zh}+bkg_{sm}.
 - Build individual pdf by MC, then fit to determine fraction.

CEPC
h h

$$B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$$

In Baiyu's result, also, the shape of bkg is fixed.

Which means we have a wonderful understanding with bkg, which may be more suitable for CEPC.

Baiyu's	µ_bb	µ_cc	µ_gg	Pre_CDR	µ_bb	µ_cc	µ_gg
eeH	1.2%	14.4%	7.8%	ееН	1.1%	14.6%	5.6%
mmH	1.1%	12.8%	6.9%	mmH	0.9%	12.6%	3.8%
qqH	0.4%	8.0%	5.2%	qqH	0.4%	3.0%	2.6%
vvH	0.4%	3.8%	1.6%	vvH	0.45%	3.2%	2.8%
Combined	0.3%	3.2%	1.6%	Combined	0.28%	2.2%	1.6%

Pre_CDR, $v\overline{v}H$, $\overline{q}qH$ results are extrapolated from ILC studies. It seems Pre_CDR's result too optimistic.

A cut flow on qqqq

筛选条件	四喷注组合 并去除轻子	可见能量 >206GeV	y ₃₄ > 0.007	喷注粒子 数> 9	$\Delta \theta > 0.92$	X>0.21	BDT>-0.19	
所有信号	493947	459972	393979	371240	318163	236652	211281	
信号一bb	413299	381470	325137	305982	261808	197510	177447	
信号一cc	19362	18690	15976	14903	12610	9562	8324	
信号-gg	61286	59812	52866	50355	43745	29580	25510	
所有背景	75M	50.6M	26.4M	21.4M	13.55M	3.15M	1.52M	
希格斯背景	299534	109529	100813	82281	71987	38579	32653	
四费米子强 子衰变	36.83M	28.19M	21.32M	18.78M	12.16M	2.2M	1.08M	
两夸克	23.86M (250M)	20.37M	5.207M	2.601M	1.315M	907188	405567	
四费米子半 轻子衰变	14.72M	1.967M	218394	27487	4745	3012	580	
		信号一bb	信号-cc		信号-gg		背景	
筛选前		413299	19362		61286	:	560M	huge bkg events (1520000) will reduce the performance.
筛选后		177447	8324		25510	1	.52M	if bkg is float, the precision
筛选效率		42.9%	43.0%		41.9%	().27%	(0.96%, 12.1%, 18.9%)

My attempt, bb/cc/gg

	CDR	Old sample	Current	Baiyu's	
bb	0.28%	0.25%	1.53%	0.3%	CEP
сс	2.2%	2.70%	38.0%	3.2%	
gg	1.6%	1.17%	7.9%	1.6%	

- Now, we can use either mass spectrum or template as observables.
- In old sample, bb/cc/gg is separated(which is not realistic.) and bkg is not complete.
- Now in a single channel, as bb/bkg large, cc/gg events limited,
 - qqbb 170000, qqcc 8000, and bkg ~1520000.
 - the fit is unstable/ performance is vary poor now.
 - Fixing.....
 - Other channels not influenced.
 - In theory this result is all the same with Baiyu's result.

Black line&dot: Asimov s+b pdf&data Blue line: signal pdf Red dot: signal mc sample Ping dash: SM bkg

2017/7/23

Ϊ.

CDR Currently 0.74% 1.2% ττ (overestimated)

- Pre_CDR concludes the precision result but no description.
- Signal and ZH events(Main WW) share the same shape
 - Dan use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal •
 - Distance from beam spot •
 - Determine the ratio, then use ratio to produce signal sample. •

- Currently,
 - qqtt channel's bkg not ready and some bugs in vvtt's bkg. ٠
 - So bkg not included; this 0.74% can be overestimated. ٠

11

WW

	CDR	Manqi's	Mine	Ci
WW	1.5%	1.0%	1.24%	

CEPC

• Pre_CDR's result contains:

Channel	Precision	Comment
$Z \to \mu \mu, H \to WW^* \to \ell \nu q q, \ell \ell \nu \nu$	4.9%	CEPC Full Simulation
$Z \to ee, H \to WW^* \to \ell \nu qq, \; \ell \ell \nu \nu$	7.0%	Scaled from $\mu^+\mu^-$ channel
$Z \to \nu \bar{\nu}, H \to W W^* \to q q q q$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

Excepted signal events of each type

	Wei Yu	iaian's	work		1 Mila	
$WW^* \rightarrow qqqq$	3498	3502	3506	20808	72735	
$WW^* \to \tau \nu q q$	1181	1182	1183	7025	24558	
$WW^* \rightarrow \mu \nu q q$	1103	1104	1105	6562	22939	
$WW^* \rightarrow evqq$	1111	1112	1114	6612	23112	
$WW^* \rightarrow \tau \nu \tau \nu$	99	99	99	593	2072	
$WW^* \rightarrow \mu \nu \tau \nu$	186	186	186	1107	3872	
$WW^* \rightarrow e \nu \tau \nu$	187	187	188	1116	3901	
$WW^* \rightarrow e \nu \mu \nu$	175	175	175	1052	3644	
$WW^* \rightarrow \mu \nu \mu \nu$	87	87	87	517	1808	Г То
$WW^* \rightarrow evev$	88	88	88	525	1836	
Z boson decay W boson decay	ee	μμ	ττ	νν	qq	
		1	1	1	1	

Currently have 11 channels of WW (with box)

- Data entry is different with Pre_CDRs'.
- Others are undergoing

Category	Signal	Relative uncertainty	Efficiency of sel
$Z \to e^+e^-; H \to WW^* \to evev$	20±7	35%	25.0%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu\mu\nu$	44 ± 8	18.2%	43.1%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow ev\mu v$	53±8	15.1%	27.6%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow evqq$	435±23	5.3%	37.0%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu \nu qq$	551±24	4.5%	48.0%
$Z \to \mu^+ \mu^-; H \to WW^* \to evev$	23 ± 5	21.7%	25.8%
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu \nu \mu \nu$	39 ± 7	18%	44.8%
$Z \to \mu^+ \mu^-; H \to WW^* \to e \nu \mu \nu$	93 ± 10	11%	54.1%
$Z \to \mu^+ \mu^-; H \to WW^* \to evqq$	573 ± 25	4.0%	51.7%
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu \nu q q$	756 ± 30	4.4%	68.4%
$Z \to v \bar{v}; H \to W W^* \to q q q q$	8403 ± 202	2.4%	34.7%
$Z \to \mu^+ \mu^-; H \to W W^* \to q q q q$	±	2.93%	

Libo's summary

ZZ

	CDR	Mine
ZZ	4.3%	5.41%

• 3 final Z, one off-shell.

Channel	Precision	Comment
$\sigma(Z(\nu\bar{\nu})H + \nu\bar{\nu}H) \times \mathrm{BR}(H \to ZZ)$	6.9%	CEPC Fast Simulation
$BR(H \to ZZ^*)$	4.3%	Extrapolation from FCC-ee [36]

- Pre_CDR's result from extrapolating the FCC-ee.
- Now has 3 channels clear and easy to study
 - Others are rather difficult; undergoing by Yuqian.

Z	Н	Mine	CDR
11		90	62+56
vv	γγ	328	339
qq		828	582

Signal events comparison

- 3 channels of $\gamma\gamma$ (*ll*, vv, $qq + \gamma\gamma$, lepton= μ , τ)
- Pre_CDR assume ECAL's resolution $\sim \frac{16\%}{\sqrt{E}} \oplus 1\%$, then to 9%.
- Ilrr, vvrr are fast simulated by Feng in 2015, and now outdated.
- qqrr updated by Yitian in 2017.4.
- Awaiting update.

$H \rightarrow invisible$

	CDR	Mine	C
invisible	0.14%	١	

• SUSY $H \rightarrow \chi_1 \chi_1$ assume $\sigma = 200$ fb.

In this case, extrapolated from ILC studies, precision is 0.14%

- Here, treat H->ZZ->vvvv as invisible.
 - 3 channels analyzed by Moxin, Z->ee/mumu/qq
 - As large bkg, my precision of μ is ~14.5%.
 - The Br precision is 0.18% (in pre_CDR it's 0.28%)

Table 11: Branching ratio measurement and upper limit				
	e^+e^-h $\mu^+\mu^-h$ $q\bar{q}h$			
Br	$0.11 \pm 0.49\%$	$0.18\% \pm 0.27\%$	$0.06\% \pm 0.34\%$	
CL 95% upper limit	1.06%	0.69%	0.42%	
Combination	Br 0.18% \pm 0.18%, CL 95% upper limit 0.50%			

$\mu\mu$ and other rare decays

	CDR	Mine
μμ	17%	14.50%

• performance benchmark for the tracking system design

- $Z\gamma$, $e\mu$, ee process are studied.
 - Since low stats and no clear ratio, not taken into fit model.

$\Delta(Br * \sigma)$ fit Result

bb/cc/gg use Baiyu's result

	PreCDR	$\sigma(ZH) * Br$	PreCDR for ΔBr	Fit result for ΔBr
$\sigma(ZH)$	0.51%	set to 0.50%		
$\Delta(Br*\sigma)$	0.28%	0.17%		0.54%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.30%	0.57%	0.57%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.20%	2.3%	1.80%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.60%	1.7%	1.06%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.24%	1.6%	1.35%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.41%	4.3%	5.42%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.2%	0.74%	1.3%	1.00%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	7.38%	9.0%	7.38%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	14.65%	17%	14.65%
$Br(H \rightarrow inv.)$	\	\	0.28%	0.18%

κ framework

 $\kappa_f = \frac{g(hff)}{a(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{q(hVV; SM)}$

- Define as the ratio of the coupling to SM expects.
- In CEPC, κ occurs on three places:
 - For Production, as now only ZH sample,
 - For Partial decay, no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 , κ_{Inv}^2

 κ_7^2 ;

- For Total width Γ_{H} . $\Gamma_{H} = \Gamma_{SM} + \Gamma_{BSM}$ for exotic decays.
- κ framework varies for different assumptions.
- Here our fit, as sample limited, we set:
 - $\Gamma_{BSM} = 0$
 - Assume Γ_H constant currently
 - So set 9 κ : κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 , κ_{Inv}^2

κ : current precision result

К	9	8	7
$\kappa_{ m b}$	1.22%	1.22%	1.22%
κ _c	1.77%	1.77%	1.77%
κ _g	1.29%	1.29%	1.29%
κ_{γ}	4.01%	4.02%	4.00%
$\kappa_{ au}$	1.28%	1.28%	1.16%
κ_{μ}	8.11%	8.11%	
$\kappa_{inv(H o vvvv)}$	12.99%		
$\kappa_{\rm Z}$	0.93%	0.93%	0.90%
$\kappa_{ m W}$	1.13%	1.14%	1.10%

9: Assume Γ_H constant.

8: Assume no invisible decay. set $\kappa_{inv} = 1$

7: Assume lepton universality $\kappa_l = \kappa_\tau = \kappa_\mu$

These simplification little affect the precision.

κ: comparison to pre_CDR

10 κ	My fit	Pre_CDR	7κ	My fit	Pre_CDR
κ_{b}	1.22%	1.3%	$\kappa_{ m b}$	1.22%	1.2%
κ _c	1.77%	1.7%	κ _c	1.77%	1.6%
κ _g	1.29%	1.5%	κ _g	1.29%	1.5%
κ_{γ}	4.01%	4.7%	κ_{γ}	4.00%	4.7%
$\kappa_{ au}$	1.28%	1.4%	κ_{μ} = κ_{τ}	1.16%	1.3%
κ_{μ}	8.11%	8.6%			
Br _{inv}	12.99%				
$\kappa_{\rm Z}$	0.93%	0.26%	$\kappa_{\rm Z}$	0.90%	0.16%
$\kappa_{ m W}$	1.13%	1.2%	$\kappa_{ m W}$	1.10%	1.2%
Γ_{H}	/	2.8%			

Pre_CDR's result from Michael Peskin's codes, totally theoretic calculation. (most stats. dependent)

Mine from MC sample.

The fit didn't consider $\Delta \sigma(ZH) = 0.5\%$, which contributes a lot to κ_Z . (and only κ_Z , so others are consistent.)

So there are a big gap.

Add pseudo data

- Since now data incomplete, bad result for κ_z
- If we reuse some MC sample
 - Ensure out total $\sigma(ZH) = 0.5\%$
 - Contribute to κ_z and μ_{global}
 - Then κ_z could be 0.12%
 - $\mu_{global} = 0.11\%$, other unchanged;

κ : other assumptions

- κ , only κ_V Boson and κ_f Fermi:
 - Means the ratio $\frac{g}{g_{SM}}$ for each Boson/Fermi are equal.
- Introducing other colliders' results in
 - Resolutions like $\kappa_{\gamma}^2 = 1.59\kappa_W^2 + 0.07\kappa_t^2 0.66\kappa_W\kappa_t$ can be added;

к	2
$\kappa_{ m V}$	0.11%
κ _f	0.18%

To dos

Can do a lot to improve this model in the future:

- Fix template issues.
- Use different assumptions to complete κ .
- Introduce NPs to describe uncertainties.
- Profile likelihood ratio? 2-D Contour?

Thanks for your attention!

Manqi's summary on LHEP 2017

CEPC: Simulation Studies

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.3%
σ (ZH)*Br(H \rightarrow WW)	1.5%	1.0%
$\sigma(ZH)^*Br(H\rightarrow ZZ)$	4.3%	4.3%
σ(ZH)*Br(H→π)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
$\sigma(ZH)^*Br(H \rightarrow Z\gamma)$	-	~4 o
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4