

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

PFA Oriented Detector: Performance

- Solid Angle Coverage : $|\cos(\theta)| < 0.99$
- Lepton id : eff > 99.5%, mis id < 1%
- Calorimeter Shower Separation : 9 16 mm
- Tracking: $\delta(1/Pt) \sim 2e-5 \text{ GeV}^{-1}$, 1 order of magnitude better than current status
- C-tagging is feasible
- Photon Energy resolution: σ /Mean ~ 1.7 2.4% for H-> $\gamma\gamma$ events
- Jet Energy resolution: σ /Mean ~ 4% for H->gg events
- Pi-Kaon Separation: at 3-4 sigma level with E < 20 GeV
- Systematic control : ~ 1 order of magnitude better
 - Beam energy monitoring, Calibration, Alignments...

In simu/reco

• Fully implemented into G4 simulation

• Evt display looks healthy

 Validation & Object level Performance study on going

Question towards the sub-detectors:

how to realize the performance:

- 1, within the constrain of energy, material budget and radiation tolerance?
 - 2, keep the level of monitoring (Calibration, alignment, homogeneity and stability)?

Main Tracker: TPC

- Collision environment & Feasibility
 - Occupancy
 - Charge distortion
 - OK for qqH events at Z pole at 2E34.
- dx = 100 micro meter per point
- Upto 200 points, align to 100 micro meter level
- Power budget (active cooling or not)
- Requested knowledge to E/B field?
- Stability (esp. In terms of dEdx)

Silicon tracking device

- Resolution 5-10 micro meter
- Material budget 1% X0 per layer (in total: 5-10% X0 before Calorimeter)
- Radiation tolerance?
 - Flux map ready
 - Tolerance limit?
- Power budget? Cooling scenario?
- Rate capability & occupancy?

ECAL: Si-W

- Photon resolution: 16%/sqrt(E) + 0.5%
- Requirement on Homogeneity? ~10%
- Power budget?
 - At 10 mm cell size should be OK
 - ToF: ADC + TDC power requirement

HCAL

- MIP efficiency ~ 98%
- MIP Multiplicity < 1.3
- Hadron energy resolution: 60%/sqrt(E) + 2%
- Separation performance & Fake Neutral Hadron (Fragments) Chance?
- Power budget?

LumiCal

- General Layout? (Limited by MDI design)
- Requested position resolution & alignment accuracy?
 - Toward 1E-3;
 - Toward 1E-4!

DAQ, etc

• To valid the trigger-less mode?

• General DAQ framework, Sub-Detector integration time, etc...?

• General cooling (if needed) system design?

• On line monitoring?