BESIII实验中CGEM探测器的 Garfield模拟及数字化模型研究

伍灵慧 wulh@ihep.ac.cn

代表BESIII CGEM-IT软件研究组

第七届全国先进气体探测器研讨会,广西大学,2017.11.11-12

Introduction

Garfield simulation

Digitization model and software

Aging of MDC inner chamber

- Hit efficiency of the BESIII MDC inner layers drops year by year due to aging
- Cylindrical GEM inner tracker (CGEM-IT) is a candidate for upgrade of MDC inner chamber

CGEM inner tracker

CGEM full simulation and digitization

- Geant4 gives particle information
- Digitization -- simulation of the detector response
- Modeling CGEM digitization:
 - Preliminary parameters from Garfield simulation
 - Coding in BESIII software framework
 - Tuning with experiment data

How to digitize the Lorentz angle, avalanche, diffusion and signal induction?

GARFIELD SIMULATION

Method

- Planar approximation to simplify the geometry
- > Use Ansys to implement:
 - Construction of the material and geometry
 - Calculation of electric field
- Simulate ionization, drift and avalanche with Garfield++
 - Ignore the contribution of ionized electrons outside the drift region

Configuration

- > Gas Mixture: Ar: iC_4H_{10} (90:10)
- > Avalanche Model: AvalancheMicroscopic
- Magnetic Field: 1Tesla
- High voltages on foils: 270V
- Electric field: 1.5 / 3 / 3 / 5 kV/cm (Drift/Transfer1/Transfer2/Induction)

Ionization

- Geant4 gives the track information
- Garfield provides number and position of ionized electrons
- Consider the ionization only in drift region

Results of 1GeV/c muon

Drift and avalanche

- Simulating the electron from ionization to induction is time consuming
- Solution is to divide the simulation into 3 steps

Original electrons are produced uniformly in the square

Transparency (τ) and Effective Gain (G_{eff})

$$N_G = N_{Orig} \cdot \tau \cdot G_{Eff}$$

 N_{Orig} : number of original electrons N_T : number of original electrons with multiplied electron leaving the gem foil N_G : number of multiplied electrons which can leave the gem foil

Transparency (τ)

Effective gain (G_{Eff})

Polya Distribution

$$P(G) = C_0 \frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{G}{G_0}\right)^{\theta} exp\left[-(1+\theta)\frac{G}{G_0}\right]$$

Gem	1	2	3
G _{Eff}	27.5	21.0	27.5

Lorentz angle (α)

Region	α	
Drift	25.2	
Transfer1	10.5	
Transfer2	10.5	

Diffusion in x (perpendicular to B)

Diffusion in z (parallel to B)

Drift time distribution

DIGITIZATION MODEL AND SOFTWARE

Ionization

- Garfield++ has been integrated into BESIII software system as an external package to simulate ionization
- Conversion of global and local coordinate is used to simplify the geometry construction in Garfield
- Ignore the energy loss from Geant4

Drift and avalanche

> Sample the parameters of multiplied electrons in 3 steps

- Number of multiplied electrons (N)
- Position (X, Z)
- Drift time (T)

Induction

Meet difficulties in the preliminary study with Garfield

- Described by drift in the first version
- Suggestions are welcome

Flow chart

Next to do

- Study of signal induction
- Simplify the sampling of drift and avalanche
- > Tuning with experimental data

Status of event processing software

Simulation

- Construction of geometry and material $\sqrt{}$
- Digitization: 1st version will be released

Reconstruction

- Cluster reconstruction $\sqrt{}$
- Track segment finding $\sqrt{}$
- Tracking combing MDC outer chamber: under study
- Kalmam filter $\sqrt{}$
- Calibration and alignment

Is about to start

Summary

- Study the behavior of ionized electron in CGEM detector using Garfield++
- Modeling the CGEM digitization in BESIII software system
- Optimize the digitization model with experimental data in the next step

