

Top quark couplings: challenging the SM

IHEP seminar, Beijing, August 2017

Dr. María Moreno Llácer (mamolla@cern.ch), CERN

Outline

- Top quark couplings to other Standard Model fields (g, γ, W, Z, and H) through gauge and Yukawa interactions
- Searches for flavour changing neutral currents (FCNC)
- Outlook

History of the top quark discovery

Direct searches:

Year	Collider	Particles	Limit on m_t
1979-84	Petra (Desy)	e^+e^-	$> 23.3 { m GeV/c^2}$
1987-90	Tristan (Kek)	e^+e^-	$> 30.2 \text{ GeV/c}^2$
1989-90	SLC (SLAC), LEP (CERN)	e^+e^-	$> 45.8 \text{ GeV/c}^2$
1984	$\operatorname{Sp\bar{p}S}(\operatorname{Cern})$	$par{p}$	$> 45.0 \text{GeV/c}^2$
1990	$\operatorname{Sp\bar{p}S}(\operatorname{Cern})$	$par{p}$	$> 69 ~ { m GeV/c^2}$
1991	Tevatron (Fnal)	$par{p}$	$> 77 \text{ GeV/c}^2$
1992	Tevatron (Fnal)	$par{p}$	$> 91 \text{ GeV/c}^2$
1994	TEVATRON (FNAL)	$par{p}$	$> 131 \text{GeV/c}^2$
1995	TEVATRON (FNAL)	$par{p}$	$= 174 \pm 10^{+13}_{-12} \text{ GeV/c}^2$
			$= 199^{+19}_{-21} \pm 22~{ m GeV/c^2}$

*1973: M. Kobayashi and T. Maskawa predicted the existence of a third generation of quarks to explain observed *CP* violations in kaon decay.

*1977: bottom quark (5th quark) was
discovered by the E288 exp. at Fermilab
→ 6th quark expected !!

* Early eighties, the SPS at CERN discovered the *W* and the Z boson, it was again felt that the top quark discovery was imminent.

* Direct search in e^+e^- and p^+p^- colliders, increasing limits on the top mass.

Top quark mass prediction from EW measurements

• Indirect searches: ~1990– indirect estimate of quark mass from precision EWK measurements (LEP)

31/8/17 María Moreno Llácer – Top quark couplings: challenging the SM

M₊(GeV)

Discovered the top quark exactly where it was expected...

F. Abe *et al.* (CDF collaboration), PRL 74:2626-2631 (1995) S. Abachi *et al.* (D0 collaboration), PRL 74:2632-2637 (1995) Top quark discovery in 1995 by CDF and D0 at Tevatron (Fermilab)

From discovery to precision with LHC top quark factory !

Situation today:
LHC is a top quark factory!
→ Millions of events
→ Many precision
measurements possible!

At peak instantaneous luminosity, ~2-5 top pairs/sec, and ~1-2 single top/sec are produced in ATLAS !!

31/8/17

pp collider

- Run I:
- 2010: √s=7 TeV, L≈45 pb⁻¹
- 2011: √s=7 TeV, 5 fb⁻¹
- 2012: √s=8 TeV, 20 fb⁻¹

- Run II:
- 2015-16: \sqrt{s} =13 TeV, 36 fb⁻¹ 2017: \sqrt{s} =13 TeV, 18 fb⁻¹ Expected end 2018: 150 fb⁻¹

From discovery to precision with LHC top quark factory !

Multiple interactions per event \rightarrow High pile-up

Run II:
 2015-16: √s=13 TeV, 36 fb⁻¹
 2017: √s=13 TeV, 18 fb⁻¹
 Expected end 2018: 150 fb⁻¹

TORY

Top quark production at the LHC

Top quark decay

* Since $m_{top} > m_W + m_b \rightarrow$ decays predominantly into a *b* quark and a *W* boson

Final state objects reconstructed in LHC experiments

The reconstruction of top quark events (i.e. all its final state objects: electrons, muons, jets, E_T^{miss} and *b*-tagging) requires information from all the ATLAS or CMS subdetectors \rightarrow A proper/precise understanding of the detector is required.

31/8/17

Jets and b-tagging

Jets are reconstructed using the information of the calorimeters.
 Precise (and in-situ) calibrations of the energy scale of inclusive jets (JES) and the relative b-to-light-jet energy scale (bJES) are vital.

At least 2 jets originated from *b*-quarks in all *tt*+X events → **b**- (and c-) tagging: very important tool(s) to increase *tt* purity • *B*-badrons live long enough to create a secondary vertex

• *B*-hadrons live long enough to create a secondary vertex, i.e. travels few mm before it decays

• Neural Network (e.g. MV1, MV2) combines properties of displaced tracks (which cross the jet axis) and displaced vertices

Analysis challenges: physics modelling uncertainties

- Monte Carlo generators used at LHC include multi-leg or fixed NLO+PS predictions for signal and main background processes.
- Signal modelling uncertainties (e.g. radiation, parton shower & hadronisation models, PDF, colour reconnection) are typically important/dominant.

Two important strategies:

Perform measurements that allow constraining these modelling uncertainties from data

- differential measurements
- Reduce generator dependency on measurements by providing results at particle level in a fiducial region experimentally accessible

The top timeline

The top timeline

Why do we still care about the top quark ?

The top quark is the **heaviest fundamental particle**, leading to <u>unique properties from both</u> <u>the theoretical and experimental sides</u>:

only place to study the properties of a bare quark

short lifetime \rightarrow decays before hadronising \rightarrow properties studied through its decay products

$1/m_t <$	$1/\Gamma_t <$	$1/\Lambda <$	m_t/Λ^2
Production time<	Lifetime <	Hadronization time <	Spin decorrelation time

sensitive to new physics in production and decay

·Yukawa coupling almost unity

can play an important role in the observations related to the electroweak symmetry breaking
 first place a new particle could be observed

→ particularly if new particle couples to mass

Top quark couplings

Top quark couples to other SM fields through its gauge and Yukawa interactions. $t \rightarrow Wb$ coupling measured already at the Tevatron.

High statistics at the LHC: *tt*+bosons (γ , *Z*, *W* and *H*) becomes available!!

- * Observation of $tt+\gamma/Z/W$ processes by both ATLAS and CMS with LHC Run1 data.
- * Not yet for *tt*+*H* process but getting close... (Run1 LHC Higgs combination: 4.4 σ)

Top coupling to $\gamma/Z/H$ bosons

Searching for the tiniest signals

Searching for the tiniest signals: very challenging

Virtues:

Many possible final states to consider!

Challenges:

- low production cross section
- a priori many handles against backgrounds with large theoretical uncertainties!

→ Most of these analyses entering regime of results being systematically limited !!

- \rightarrow Recent developments in theory community:
 - NLO QCD+EW corrections to *tt+H/Z/W* Also NLO+NNLO for *tt+Z*
 - NLO QCD corrections to *t*+*H*
 - off-shell effects in *tt+H* production
 - · beyond NLO QCD: soft resummation

→ Implementation of latest theoretical developments is crucial to reduce uncertainties.

σ (pb)	8 TeV	13 TeV	13 / 8
tt+Z	0.206	0.839 (±12%)	3.7
tt+W	0.232	0.601 (±13%)	2.4
tt+H	0.129	0.5085 (±13%)	3.9
tt	~250	~830	3.3

Top coupling to photons: $tt+\gamma$

 $\sqrt{s} = 8 \text{ TeV} 20.2 \text{ fb}^{-1}$ This work

 $\sqrt{s} = 7 \text{ TeV} 4.59 \text{ fb}^{-1}$ PRD 91 (2015) 072007

0.5

NLO prediction based on PRD 83 (2011) 074013

1.5

stat total

ATLAS

First observation (5.3 σ) with 7 TeV data

- measurement performed in a fiducial region within the ATLAS acceptance (as $p_T^{\gamma} > 20 \text{ GeV}$)
- template fit to track isolation distribution of photons
- non-prompt photon contributions: data-driven estimates
- systematics limited, dominant sources:

jet energy scale, photon, signal modelling, b-tagging

First differential measurements with 8 TeV data

in photon p_{T} and $|\eta|$ - fiducial cross-section: rel. unc. 13% (~ theoretical pred.)

arXiv:1706.0304

31/8/17

tt+W and *tt+Z* are rare processes - could be modified by new physics \rightarrow Important irreducible background for *tt+H*(multilep), new physics (VLQ, SUSY, etc)

Many experimental signatures:

tt+Z	$tt \rightarrow$ dilepton	<i>tt</i> → I+jets	$tt \rightarrow$ all-had.	Z decay modes:
Z→II	<u>4l + 2j(2b)</u>	3l + 4j(2b)	2l (OS) + 6j(2b)	BR($Z \rightarrow ee/\mu\mu/\tau\tau$): 0.10
$Z \rightarrow vv, Z \rightarrow jj$	2l (OS) + ≥2j(≥2b)	1I + ≥4j(≥2b)	0l + ≥6j(≥2b)	$BR(Z \rightarrow vv): 0.20$ $BR(Z \rightarrow jj): 0.70$

tt+W	$tt \rightarrow$ dilepton	<i>tt</i> → I+jets	<i>tt</i> → all-had.
W→Iv	3l + 2j(2b)	2I (OS or SS) + 4j(2b)	1l + 6j(2b)
W→jj	2l (OS) + ≥2j(≥2b)	1I + ≥4j(≥2b)	0l + ≥6j(≥2b)

Experimental analyses focus on 2I OS or SS, 3I and 4I channels with *e* and/or μ . \rightarrow MANY MORE TO BE EXPLORED !!!

tt+*W* and *tt*+*Z* are rare processes - could be modified by new physics → Important irreducible background for *tt*+*H*(multilep), new physics (VLQ, SUSY, etc)

Only the most sensitive channels	Process	$t\bar{t}$ decay	Boson decay	Channel
(3.2fb ⁻¹ , 2015 data):	$t\bar{t}W^{\pm}$	$\begin{array}{l}(\mu^{\pm}\nu b)(q\bar{q}b)\\(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)\end{array}$	$\mu^\pm u\ \ell^\pm u$	SS dimuon Trilepton
EPJC 77 (2017) 40	$t\bar{t}Z$	$\begin{array}{c} (\ell^{\pm}\nu b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array}$	$\ell^+\ell^-\\\ell^+\ell^-$	Trilepton Tetralepton

Sample statistics, S/B ratio and dominant backgrounds vary across different channels \rightarrow for each of them, several SRs (lepton flavour/charge, nJets, nBjets) and CRs (WZ, ZZ)

$\frac{9}{40} = 10^{3}$ $\frac{47LAS}{\sqrt{5}} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $\frac{10^{2}}{10}$ 10^{2} 10^{-1} $\frac{10^{-1}}{3L-W_{2}-C_{R}} + SS^{-3L-2}$ 2 CRs	Data 2015 tīz tīW ZZ OT Fake leptons // Ur	\rightarrow Croc likeliho	bes-sections obtained from combined profile bod fit to signal and control regions	
$\Delta\sigma/\sigma$ (%), Significance	tt+Z	tt+W	Uncertainty $\sigma_{t\overline{t}Z} \sigma_{t\overline{t}W}$	V
orginiteance			Luminosity 2.6% 3.1%	, 0
ATLAS 2012	32%, 4.2σ	26%, 5.0σ	/ Reconstructed objects8.3%9.3%	, D
CMS 2012	27%, 6.4σ	31%, 4.8σ	/ Backgrounds from simulation 5.3% 3.1%	, D
ATLAS 2015	32% 3.90	only 111 53% 2.20	/ Fake leptons and charge misID 3.0% (18.79	Z
	(31% stat)	(48% stat)	Signal modelling 2.3% 4.2%	, 0
			Total systematic11%22%)
CMS 2015+2016	14%, 9.9σ	15%, 5.5σ	Statistical 31% 48%	
	(stat ~syst. unc.)	(stat ~syst. unc.)	Total 32% 53%)

Analysis ongoing with 2015+2016 data (36 fb⁻¹), STAY TUNED !

Better fake & charge mis-id. suppression (MVA techniques), also improvements on detectors systematics !

Search for *tt***+***H* **process**

One of the highlights of Run II physics program

Top coupling to Higgs boson: *tt+H*

- Higgs boson discovery in July 2012
- In the SM, fermion masses are proportional to Higgs fermion Yukawa couplings → Important to test this prediction
- *tt*+*H* production provides **direct sensitivity** to top-Higgs Yukawa coupling
- **Indirect constraints** to this coupling extracted from channels involving the *ggH* and $H_{\gamma\gamma}$ vertices (assumes no new particles in loops)

ATLAS *tt*+*H* search channels

Higgs decay channel	Run I (20.3 fb ⁻¹ / 24.8 fb ⁻¹) 8 TeV / 7+8 TeV	Run II (13.2 fb ⁻¹ / <mark>36.1 fb⁻¹</mark>) 13 TeV
<i>H</i> → <i>bb</i> <i>tt</i> single & di-leptonic <i>tt</i> full-hadronic	Eur. Phys. J. C (2015) 75:349 JHEP 05 (2016)160	ATLAS-CONF-2016-080
Multileptons (<i>H</i> → <i>WW*, ττ, ZZ*</i>)	Phys.Lett. B 749 (2015) 519	ATLAS-CONF-2016-058
<i>H</i> → <i>ZZ</i> *→4I (I=e, <i>µ</i>)	Phys. Rev. D 91 012006 (2015) (within ggH category)	ATLAS-CONF-2017-043
Η⊸γγ	Phys. Lett. B 740 (2015) 222	ATLAS-CONF-2017-045
ATLAS <i>tt</i> + <i>H</i> combination	JHEP 05 (2016) 160	ATLAS-CONF-2016-068 (bbar, multileptons, γγ) ATLAS-CONF-2017-047 (ZZ*→4I, γγ)
		JHEP08(2016)045

 LHC Run I Higgs combination: *tt+H* significance of 4.4 σ (2.0 σ expected) Excess in both ATLAS and CMS from multilepton ch.

In the rest, I will focus on Run II analysis methods and preliminary results.

Search for $tt+H(H \rightarrow bb)$

ATLAS-CONF-2016-080

 $H \rightarrow bb$ channel has largest branching ratio (58%), and offers sensitivity to Higgs-Bottom Yukawa coupling.

In analysed dataset (13.2 fb⁻¹), about 4k *tt*+*H*(*bb*) signal events have been produced with 1000k *tt*+jets background.

Event preselection / analysis strategy

tt+H (H\rightarrowbb) signal produces 1 or 2 leptons and 6 or 4 jets, 4 of them b-jets $_{b}$

Single lepton:

- exactly 1 charged leptons (e/µ)
- \geq 4 jets being \geq 2 *b*-tagged

Dilepton:

- exactly 2 charged leptons (e/µ)
- with OS ($m_{\parallel} > 15$ GeV, Z veto) • ≥ 3 jets being ≥ 2 *b*-tagged

Analysis strategy

- Categorize events according to the # jets and *b*-jets -> control and signal regions
- Simultaneous profiled likelihood fit including all regions

31/8/17

- Discriminant variables:

control regions: scalar sum of p_T for all jets (and the leptons) in single (di)-lepton channel
 signal regions: build multivariate discriminant (two-stage multivariate technique)

- 1. Match observed jets to Higgs and top quarks (BDTreco)
- 2. Classify event as more signal-or-bkg. like (Classification BDT or NN output)
 - using topological variables from tt and Higgs decay

Background composition

- Very challenging final state affected by large systematics:

tt+jets, *tt*+heavy flavour modelling, *b*-tagging, JES

- Analysis relies on a profiled likelihood fit, in order to constrain in-situ the leading systematics
 - signal-depleted regions play a key role constraining syst. unc.

$$L(\mu,\theta) = L_{Pois}(\mu,\theta) \cdot \prod_{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_p^2}{2}\right) \cdot \prod_{i,j} \frac{1}{\sqrt{2\pi}\sigma_{\gamma,ij}} \exp\left(-\frac{(\gamma_{ij}-1)^2}{2\sigma_{\gamma,ij}^2}\right)$$

penalty terms or priors: inputs from subsidiary statistical uncertainty of MC measurements (**nuisance parameters**)

tt+jets (heavy flavour) modelling: critical piece

- * *tt*+jets is the largest background, with sizeable syst. that have a large impact on the sensitivity → more heavy flavour (HF) dominating towards SRs
- * Estimating *tt*+jets critical part of analysis: use Powheg+Pythia6 NLO+PS simulation,

with top and $tt p_T$ spectra corrected to NNLO calculation

* Classify events into: *tt*+light, *tt*+≥1c and *tt*+≥1b jets

tt + ≥1 *b*-*jet*: pure parton shower in Powheg+Pythia (5-flavour scheme)

- large uncertainty on prediction (both normalization and kinematics)
- corrected to 4-flavour scheme NLO QCD *tt+bb* calculation with Sherpa+OpenLoops

tt+jets (heavy flavour) modelling: critical piece

- * *tt*+jets is the largest background, with sizeable syst. that have a large impact on the sensitivity → more heavy flavour (HF) dominating towards SRs
- * Estimating *tt*+jets critical part of analysis: use Powheg+Pythia6 NLO+PS simulation,

with top and $tt p_T$ spectra corrected to NNLO calculation

* Classify events into: *tt*+light, *tt*+≥1c and *tt*+≥1b jets

tt + ≥1 *b*-*jet*: pure parton shower in Powheg+Pythia (5-flavour scheme)

- large uncertainty on prediction (both normalization and kinematics)
- corrected to 4-flavour scheme NLO QCD *tt+bb* calculation with Sherpa+OpenLoops

 1st) relative contributions of diff. categories of *tt*+HF
 2nd) compare kinematic dist. → re-weight events to match kinematics of Sherpa 4F NLO

- Normalization of tt + ≥1b and tt + ≥1c jets
 backgrounds taken as free parameters in the fit
 [Run I: NP with 50% prior → down ~20% in the fit]
- Many sources of uncertainty considered, including choice of hard process MC generator, parton shower and hadronisation model, initial/final state radiation.

Profiling uncertainties: signal-depleted region (H_T)

Single lepton, ≥6 jets =2 b-jets

 Observed mis-modelling (slopes) in CRs (dominated by *tt*+light) for H_T and jet multiplicity: data has softer H_T and harder N_{jets} dist. (top/*tt* p_T mismodelling, observed in other analysis)

Profiling uncertainties: signal-enriched region (BDT)

Single lepton, ≥6 jets ≥4 b-jets

. The observed data/MC discrepancy is higher in regions dominated by *tt*+HF.

- · Large uncertainties in predictions for $tt \ge 1b$ (and $tt \ge 1c$) normalisation
- → norm. factors are free-floating parameters in the fit: $k_b = 1.33^{+0.18}_{-0.17}$ $k_c = 1.31^{+0.53}_{-0.40}$

Results

31/8/17

NLO QCD bring new questions on modelling

- tt+bb pure QCD process, very complicated and poorly understood: involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (LHCHiggs WG)
 - NLO 4F scheme *tt+bb* predictions (with massive *b*-quarks in ME) with novel generators
 - comparisons with inclusive 5F scheme tt+jets
 - how to merge 4F and 5F samples?
 - heavy flavour classification

Two possible schemes for NLO calculations:

 \rightarrow **5FS scheme**: (m_b = 0, N_f in proton PDF = 5)

x divergencies at $m_{bb} \sim 0$ GeV, must set a cut-off for calculation

/ inclusive calculations for all tt+jets contributions (b-quark treated as others)

 \rightarrow **4FS scheme**: (m_b != 0, N_f = 4)

3

 \sim full description of gluon splitting (calculations up to m_{bb} ~0 GeV)

✓ NLO accuracy for any observable (EW corrections might be significant \rightarrow not implemented in MC generators) x need additional step to combine with inclusive *tt*+jets samples

NLO QCD bring new questions on modelling

- tt+bb pure QCD process, very complicated and poorly understood: involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments cr
- studies ongoing in both experiments in close collaboratio
 - NLO 4F scheme tt+bb predictions (with massive b-qu
 - <u>comparisons with inclusive 5F scheme tt+jets</u>
 - how to merge 4F and 5F samples?
 - heavy flavour classification

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
Sherpa2.1+OpenLoops	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
MG5_AMC@NLO	MC@NLO	Pythia 8.2	4.75 (4F)	no
Powhel	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 {\rm GeV}$
		-		$\frac{m_{bb}}{2} > 4.75 \mathrm{GeV}$

- differences of ≥40% for tt+≥2b cross section
- further studies on some of the settings ongoing e.g. strong sensitivity to resummation scale (shower starting scale) in MG5_aMC@NLO

additional b-jets (inclusive)

NLO QCD bring new questions on modelling

- tt+bb pure QCD process, very complicated and poorly understood: involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (LHCHiggs WG)
 - NLO 4F scheme *tt+bb* predictions (with massive *b*-quarks in ME) with novel generators
 - comparisons with inclusive 5F scheme tt+jets
 - how to merge 4F and 5F samples?
 - heavy flavour classification

Approach proposed in the LHCHiggs Yellow Report 4

- * NLOPS 4F *tt+bb* sample
 - ·can be applied in full phase space (no generation cuts)
 - ·inclusive description of tt+>1b-quarks
 - ·includes $gb \rightarrow ttb$ contributions also in the 5F scheme

* Inclusive 5F *tt*+jets sample

- needs to be restricted to *tt*+0 *b*-quarks to avoid double counting (veto events containing *b*-quarks not arising from showered top decays or MPI or UE)
- \rightarrow Ongoing discussions on possible implementations

NLO QCD bring new questions on modelling

- tt+bb pure QCD process, very complicated and poorly understood: involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (LHCHiggs WG)
 - NLO 4F scheme *tt+bb* predictions (with massive *b*-quarks in ME) with novel generators
 - comparisons with inclusive 5F scheme tt+jets
 - how to merge 4F and 5F samples?
 - heavy flavour classification

Subcategories

- "tt+b": 1 extra particle jet in the event which is matched to exactly 1 HF hadron
- "tt+bb": 2 particle jets, each of them matched to exactly 1 HF hadron
- "tt+B/2b" (ATLAS/CMS): 1 particle jet which is matched to a bb pair (g→bb splitting), i.e to >1 hadron

Cuts	ATLAS *	CMS	
Reco-level jets	(all events are classified)	\geq two jets with p _T > 30 GeV	* From ongoing studies, the relative differences
Particle level jets	15 GeV	20 GeV	among generators in
Hadrons	5 GeV, no p _T ^{hadron} /p _T ^{jet} cut	No cuts	tt+jets fractions seem stable against these cuts
Particle-hadron matching	dR<0.3	Ghost matching	

Search for *tt*+*H*(*H*→*multilepton*)

ATLAS-CONF-2016-058

tt+*H*→multileptons channel has clean final states, and has a priori better modelled irreducible background (*tt*+*W* and *tt*+*Z*).

Search for *tt*+*H* (*H*→multilepton)

A candidate ee event in 2ℓ0thad category

- Two selected electrons.

- Energy deposits in the electromagnetic (LAr) and hadronic (tile) calorimeters.
- Azure cones are the three b-tagged jets and the yellow cones are the six non-b-tagged jets.

Analysis strategy and background estimates

- Low rates, but high purity S/B >0.2
- Cut-and-count analysis in 6 categories: 2l0thad (ee,eµ,µµ), 2l1thad, 3l and 4l
- Simultaneous fit in 6 bins
- Backgrounds:
 - Reducible bkgs. (data-driven techniques)
 - non-prompt light leptons → estimated from data control region
 - electron charge misidentification → estimate from Z+jets OS+SS events
 - hadronic tau misreconstruction → simulation scaled by data/MC normalisation
 - Irreducible bkgs. estimated from simulation, checked in validation regions
 - tt+W, tt+Z and diboson (VV) \rightarrow estimated from simulation

Results

Best fit values of the *tt+H* signal strength

- Statistical unc. ~ systematics limited, main syst. from non-prompt and charge misID, jet-vertex fraction (due to pile-up, ~2.5% per jet)
- Slight excess, consistent with SM prediction

31/8/17

tt+H combination

Flavour changing neutral currents

Run I LHC top FCNC searches

FCNC are forbidden in SM at tree level, strongly suppressed by GIM mechanism at higher orders
 → Powerful probe for new physics BSM can enhance FCNC production.

FCNC t→qH in ttbar events

FCNC $t \rightarrow H(all)q, t_{SM} \rightarrow bW$ JHEP12(2015)061 ($\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$)

H→WW,ττ,ZZ

- multilepton final states
- reinterpretation of *tt*+*H* search

H→bb

- dedicated analysis
- split events into several regions (nJets, nBjets)
- sophisticated MVA techniques

Н→үү

- limited by data statistcs

BR *t→Hc* < 4.6x10⁻³ @95% CL BR *t→Hu* < 4.5x10⁻³ @95% CL FCNC $t \rightarrow H(\gamma \gamma)q$, $t_{SM} \rightarrow bW$ arXiv:1707.01404 $(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1})$

- <u>Two modes</u> for t_{SM} :
 - Hadronic: 2 photons, ≥4 jets, ≥1 b-tagged.
 - Leptonic: 2 photons, 1e or 1μ , ≥ 2 jets.
- Cuts on $m(t_{FCNC})$ and $m(t_{SM})$
- For each of mode, <u>two categories</u>:
 - passing full selection / failing only t_{SM} mass criterion
- 4-channels combined: BR t→H(γγ)c < 2.2x10⁻³ @95% CL BR t→H(γγ)u < 2.4x10⁻³ @95% CL

JES, ME generator and radiation modelling

Outlook

- Precise measurements of the top quark couplings may provide insights on the underlying mechanism for EWSB and whether or not the top quark plays a role in it.

- The program of measurements for *tt*+*X* production at the LHC is well underway:

tt+Z/W: statistics limited (with full 2016 dataset statistical unc. ~ systematics unc.)
 • also differential measurement and EFT interpretation

*tt***+***H*: main decay modes being explored ($H \rightarrow bb$, WW, $\tau\tau$, ZZ and $\gamma\gamma$)

- entering regime of results being systematically limited (bkg. and signal modelling)
 - \rightarrow one of the main focus of the experiments in collaboration with theorists
- expected *tt+H* evidence with full 2016 dataset !! STAY TUNED ③

Several new projects:

* Exploit boosted regime

* *t*+*H* production

Unprecedented & unique dataset NOW available: ideal for new physics searches!

- * For a given Y_t , $\sigma(tt+H)/\sigma(tt+Z)$ can be predicted theoretically with a much better precision !
- * Angular distributions to study CP violation

BACK-UP

Increase in the cross sections

Increase of expected cross section in Run 2 \rightarrow more tt+X events in Run2 !!!!!

Cross section ratios 13 TeV / 8 TeV

Cross section measurement

Simultaneous binned profile likelihood fit $L(\mu, \theta)$ to all analysis regions (S+B hypothesis)

- parameter of interest: signal strength µtt+H
- <u>nuisance parameters</u> θ_{p} : systematic uncertainties
- include CRs to constrain main irred. backgrounds

(floating normalisation factors correlated across ch.)

Measurements made using profile likelihood ratio test statistic $\Lambda(\alpha)$

* conditional / unconditional likelihoods

The top quark in the Standard Model

- Completes the 3rd family structure of SM
- Electric charge = 2/3|e|
- Spin = 1/2, Isospin $(T_3) = +1/2$
- Mass ~173.34 ± 0.76 GeV
- Fast decay: $\tau \sim 4.10^{-25}$ s, $\Gamma = 1.32$ GeV
- Dominant decay to $t \rightarrow Wb$:

 $|V_{tb}| > 0.999 \Rightarrow BR(t \rightarrow Wb) \sim 100\%$ BR $(t \rightarrow Ws) \leq 0.18\%$ BR $(t \rightarrow Wd) \leq 0.02\%$

HF definition and treatment of uncertainties

Reconstructed <u>*tt*+jets</u> events are classified into several <u>categories</u> and <u>subcategories</u>, <u>based on</u> <u>the flavour of additional jets (at particle level)</u> and <u>number of hadrons in each of them</u>.

- * Only additional particle level jets above a p_T threshold are considered in the classification
- * Jets flavour (b, c or light) is determined via a ghost or dR matching to hadrons.
 - · For b and c jets, kinematics cuts on the leading hadron to which they are matched being studied.
 - · No p_T ratio p_T^{hadron}/p_T^{jet} cut is considered (so far) in the HF classification.

Cuts	ATLAS *	CMS	* From ongoing studies,
Reco-level jets	(all events are classified)	\geq two jets with p _T > 30 GeV	the relative differences among generators in
Particle level jets	15 GeV	20 GeV	tt+jets fractions seem
Hadrons	5 GeV, no p_T^{hadron}/p_T^{jet} cut	No cuts	stable against these cuts
Particle-hadron matching	dR<0.3	Ghost matching	

Subcategories

- "tt+b": 1 extra particle jet in the event which is matched to exactly 1 HF hadron
- "tt+bb": 2 particle jets, each of them matched to exactly 1 HF hadron
- "tt+B/2b" (ATLAS/CMS): 1 particle jet which is matched to a bb pair (g→bb splitting), i.e to >1 hadron

Treatment of uncertainties

ATLAS: reweighting of kinematics for each subcategory in 5F sample to 4F predictions

 \rightarrow treating uncertainties as fully correlated among subcategories

CMS: shapes from 5F predictions \rightarrow treating uncertainties as fully uncorrelated.

tt+H modelling: studies at particle/parton level (ATLAS)

Ratio

ATL-PHYS-PUB-2016-005

MG5 aMC@NLO + Pythia8

Parton level

IG5 aMC@NLO + Herwig++

ttH p_T

tTH system p [GeV]

ATLAS Simulation Preliminar

\s = 13 TeV

* MG5_aMC@NLO+Pythia8 prediction: slightly more events with six jets (number of expected jets for the selected channel tt+H with $tt\rightarrow$ lep+jets, $H\rightarrow$ bb). In addition, jets transverse momenta is harder.

* Visible effects in low region of $tt+H p_T$ spectrum due to different showering and hadronisation model (Py8/HWpp), larger than A14 Var3c (ISR) variations.

* Scale choice: main effect from μ_R , cross-section varies 9%, shape effect <1%

Search for *tt*+*H* (H→bb)

ttH (H \rightarrow bb) signal produces 1 or 2 leptons and 6 or 4 jets, 4 of them *b*-jets

- Very challenging final state affected by large systematics: tt+jets, tt+heavy flavour modelling, *b*-tagging, jet energy scale
- Cotogorize events eccording to the thirts and histo. A control and circ
- Categorize events according to the # jets and b-jets -> control and signal regions
- Build multivariate discriminant in signal-enriched regions

# b-jets ►		S	ingle lepto	n
9tS		2 <i>b</i> -tags	3 <i>b</i> -tags	\geq 4 <i>b</i> -tags
€ 	4 jets	H ^{had}	H_T^{had}	H ^{had}
	5 jets	H_T^{had}	NN	NN
V	\geq 6 jets	H_T^{had}	NN	NN

Dilepton

	2 <i>b</i> -tags	3 <i>b</i> -tags	\geq 4 <i>b</i> -tags		
2 jets	Η _T				
3 jets	H _T	NN			
\geq 4 jets	HT	NN	NN		

- Signal-depleted regions: (\bar{b}) use H_T^{had} = sum p_T of jets for single lepton H_T = sum p_T of jets and leptons for dilepton
- Region with 5 jets and 3 *b*-jets:

use neural networks (NN) trained to separate tt+bb/cc from tt+light jets

• Signal-rich regions:

use MVA trained to separate ttH for tt+jets in each region

Systematic uncertainties

Systematic uncertainty	Туре	Components
Luminosity	N	1
Reconstructed Objects		
Electron trigger+reco+ID+isolation	SN	5
Electron energy scale+resolution		2
Muon trigger+reco+ID+isolation	SN	6
Muon momentum scale+resolution	SN	3
Pileup reweighting	SN	1
Jet vertex Tagger	SN	1
Jet energy scale	SN	18
Jet energy resolution	SN	1
Missing transverse momentum	SN	3
b-tagging efficiency	SN	5
c-tagging efficiency	SN	4
Light-jet tagging efficiency	SN	14
High-p _T tagging	SN	2
Background and Signal Model		
tī cross section	Ν	1
tt+HF: normalisation	Ν	2
$t\bar{t} \ge 1b$: NLO Shape	SN	10
$t\bar{t} + \geq 1c$: NLO Shape		1
tt modelling: residual Radiation	SN	3
tī modelling: residual NLO generator	SN	3
tt modelling: residual parton shower+hadronisation	SN	3
tt NNLO reweighting	SN	4
W+jets normalisation	Ν	6
Z+jets normalisation	Ν	6
Single top cross section	Ν	2
Single top model		2
Diboson normalisation		1
Fakes normalization	SN	7
ttV cross section	Ν	4
tīV model	SN	XXXX
tiH cross section	Ν	2
ttH branching ratios	N	4
ttH model	SN	XXX

• Luminosity

Many systematic uncertainties, both theoretical and experimental.

• Physics objects

leptons (ID, trigger, isolation)

jets: pile-up,JVT, JES, JER

- MET

-b-tagging

Background model

tt+jets

small backgrounds

→single lepton:

• W+jets:

overall 30% unc. decorrelated across N(jets)

additional W+HF 30% unc. decorrelated across N(b-tags) •Z+jets XS systematic unc. 45%.

•Fakes: 50% norm. unc. per N(b-tags) and lepton flavour
→ dilepton:

Z+jets: overall 30% unc. decorrelated across N(jets) additional Z+HF 30% unc. decorrelated across N(b-tags)
Fakes: overall 50% norm. unc.

Signal model

31/8/17

tt+H(bb): summary of tt+jets modelling uncertainties

Systematic source	How evaluated	$t\bar{t}$ categories		
$t\bar{t}$ cross-section	$\pm 6\%$	All, correlated		
NLO generator	Powheg Boy \pm Herwight vs. MG5 aMC \pm Herwight	All, uncorrelated		
(residual)	$1 \text{ owneg-box} + \text{ nerwig++ vs. } \text{ in G3_ame} + \text{ nerwig++}$			
Radiation	Variations of up up and hdamn	All, uncorrelated		
(residual)	variations of $\mu_{\rm R}, \mu_{\rm F},$ and <i>naump</i>			
PS & hadronisation	Powheg-Box \pm Pythia 6 vs. Powheg-Box \pm Herwig+ \pm	All uncorrelated		
(residual)	Towneg-box + Tytina o vs. Towneg-box + Herwig++	An, uncorrelated		
NNLO top & $t\bar{t} p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c, t\bar{t} + \text{light, uncorr.}$		
$t\bar{t} + bb$ NLO generator	SherpaOL vs_MG5 aMC + Pythia8	$t\bar{t} + >1b$		
$_reweighting$	Sherpaon vs. Medonnie – Tytinae			
tt + bb PS & hadronis.	MG5 aMC + Pythia8 vs. MG5 aMC + Herwig++	$t\bar{t} + \geq 1b$		
$_reweighting$				
tt + bb renorm. scale	Up or down a by factor of two	$t\bar{t} + \geq 1b$		
_ reweighting				
tt + bb resumm. scale	Vary $\mu_{\rm O}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + > 1b$		
reweighting				
tt + bb global scales	Set μ_{O} , μ_{B} , and μ_{E} to μ_{CMMPS}	$t\bar{t} + \geq 1b$		
reweighting				
tt + bb shower recoil	Alternative model scheme	$t\bar{t} + > 1b$		
reweighting				
tt + bb PDF	CT10 vs. MSTW or NNPDF	$t\bar{t} + \geq 1b$		
reweighting				
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$tt + \geq 1b$		
tt + bb FSR	Radiation variation samples	$tt + \geq 1b$		
$tt + c\bar{c}$ ME calculation	$MG5_aMC + Herwig++ inclusive vs. ME prediction$	$tt + \geq 1c$		

Expected signal and post-fit background yields

Channel	Region	$t\bar{t}H$ (S)	Bkgd (B)	tHjb + WtH	S/B	N_{Data}
$H \rightarrow \alpha \alpha$	all-hadronic	1.58	8.27	0.10	0.19	9
$II \rightarrow \gamma \gamma$	leptonic	1.16	2.42	0.10	0.48	2
$H \rightarrow (WW, \tau \tau, ZZ)$	$2\ell SS \ ee$	1.99 ± 0.51	22.2 ± 3.4	0.10 ± 0.03	0.09	26
	$2\ell { m SS} \; e\mu$	4.82 ± 0.95	38.5 ± 5.1	$0.26~\pm~0.07$	0.13	59
	$2\ell { m SS}~\mu\mu$	2.85 ± 0.58	$21.2~\pm~3.8$	0.15 ± 0.04	0.13	31
	$2\ell SS + \tau_{had}$	1.43 ± 0.31	5.7 ± 1.7	0.11 ± 0.03	0.25	14
	3ℓ	6.2 ± 1.1	$38.9~\pm~5.3$	$0.30~\pm~0.08$	0.16	46
	4ℓ	0.59 ± 0.10	$1.42\ \pm 0.24$	0.014 ± 0.006	0.42	0
$H \rightarrow b \bar{b}$	ℓ +jets ($\geq 6j, 3bj$)	119 ± 16	11250 ± 240	6.2 ± 1.5	0.011	11561
	ℓ +jets (5j, \geq 4bj)	11.8 ± 2.6	429 ± 28	0.91 ± 0.14	0.028	418
	ℓ +jets ($\geq 6j, \geq 4bj$)	44.9 ± 9.4	$1191~\pm~55$	$2.10~\pm~0.50$	0.038	1285
	dilepton ($\geq 4j, 3bj$)	20.6 ± 4.2	1423 ± 45	0.71 ± 0.20	0.014	1467
	dilepton ($\geq 4j, \geq 4bj$)	6.6 ± 2.0	133 ± 12	0.171 ± 0.053	0.050	154

Channel	Region	WW	au au	ZZ	$b\bar{b}$	$\gamma\gamma$
$H \rightarrow \gamma \gamma$	all-hadronic	-	—	—	—	100%
	leptonic	_		—	_	100%
H ightarrow (WW, au au, ZZ)	$2\ell SS~ee$	76%	17%	2%	4%	_
	$2\ell SS \ e\mu$	77%	17%	3%	3%	—
	$2\ell SS \ \mu\mu$	79%	17%	3%	1%	—
	$2\ell SS + \tau_{had}$	46%	51%	2%	1%	—
	3ℓ	74%	20%	4%	1%	—
	4ℓ	72%	18%	9%	_	—
$H ightarrow b ar{b}$	ℓ +jets ($\geq 6j, 3bj$)	5%	1%	1%	90%	_
	ℓ +jets (5j, \geq 4bj)	-	_	—	99%	—
	ℓ +jets ($\geq 6j, \geq 4bj$)	1%		1%	97%	—
	dilepton ($\geq 4j, 3bj$)	6%	1%	1%	90%	—
	dilepton ($\geq 4j, \geq 4bj$)	_	—	—	98%	_

EFT operators

Standard model deviations are described by higher dimensional operators:

Run I LHC top FCNC searches

FCNC QCD Lagrangian: anom.

Run I LHC FCNC results are expressed in the framework of anomalous couplings:

$$\mathcal{L}_{FCNC} = \sum_{q=u,c} \begin{bmatrix} \frac{\sqrt{2}}{2} g_s \frac{\kappa_{gqt}}{\Lambda} \cdot \bar{t} \sigma^{\mu\nu} \left(f_{gq}^L P_L + f_{gq}^R P_R \right) q \frac{\sigma_{\mu\nu}}{\sigma_{\mu\nu}} & \text{tensor} \\ + \frac{\sqrt{2}}{2} e^{\frac{\kappa_{\gamma qt}}{\Lambda}} \cdot \bar{t} \sigma^{\mu\nu} \left(f_{\gamma q}^L P_L + f_{\gamma q}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{\sqrt{2}} \eta_{hqt} \cdot \bar{t} \left(f_{hq}^L P_L + f_{hq}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{\sqrt{2}} \eta_{hqt} \cdot \bar{t} \left(f_{hq}^L P_L + f_{hq}^R P_R \right) q A_{\mu\nu} \\ + \frac{\sqrt{2}}{4} \frac{g}{\cos \theta_W} \frac{\kappa_{zqt}}{\Lambda} \cdot \bar{t} \sigma^{\mu\nu} \left(f_{zq}^L P_L + f_{zq}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{\sqrt{2}} \frac{g}{4} \frac{\kappa_{zqt}}{\cos \theta_W} \frac{\kappa_{zqt}}{\Lambda} \cdot \bar{t} \sigma^{\mu\nu} \left(f_{zq}^L P_L + f_{zq}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{\sqrt{2}} \frac{g}{4} \frac{\kappa_{zqt}}{\cos \theta_W} \frac{\kappa_{zqt}}{\Lambda} \cdot \bar{t} \sigma^{\mu\nu} \left(f_{zq}^L P_L + f_{zq}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{4} \frac{g}{\cos \theta_W} \zeta_{zqt} \cdot \bar{t} \gamma^{\mu} \left(f_{zq}^L P_L + f_{zq}^R P_R \right) q A_{\mu\nu} \\ + \frac{1}{4} \frac{g}{\cos \theta_W} \zeta_{zqt} \cdot \bar{t} \gamma^{\mu} \left(f_{zq}^L P_L + f_{zq}^R P_R \right) q A_{\mu\nu} \\ + h.c \end{bmatrix}$$
Assumptions
$$\frac{\sqrt{|f_{zq}^L|^2 + |f_{zq}^R|^2}}{\sqrt{|f_{zq}^L|^2 + |f_{zq}^R|^2}} = 1 \qquad \frac{\kappa_{zqt}}{\Lambda}, \zeta_{xqt}, \text{ and } \eta_{xqt} > 0$$

$$\frac{\sqrt{|f_{zq}^L|^2 + |f_{zq}^R|^2}}{\sqrt{|f_{zq}^L|^2 + |f_{zq}^R|^2}} = 1$$
Simplifications
$$f_{xq}^R = 0 \& f_{xq}^L = 1$$

X: usually neglected

Top decay

t→gq

t→γq t→Zq t→hq

Single top

 $p p \rightarrow t (g)$

 $p p \rightarrow t \gamma$

 $p p \rightarrow t Z$

 $p p \rightarrow t h$

κ_{gqt}/

 $\kappa_{gqt}/$

Х

Х

X X

Х

 f^R_{xq} =1 & $f^L_{xq} = \mathbf{0}$

FCNC signatures

• Depending on decay mode of t or tt and Z/H: from 0 to 5 light (e/μ) leptons (+X jets + Y b-jets)

Z boson decays:

Top quark pairs decays:

