Proposals on Analysis Preservation

(According to Sebastian's talk on LHCb Analysis&Software Week) https://goo.gl/ngAzhn

Mingrui Zhao¹

Updated: 08/14/17

CEPC Simulation and Software meeting

Outline

- 1. Introduction
- 2. Analysis preservation and in CERN&LHCb
- 3. Draft suggestions for CEPC analysis
- 4. conclusion

Motivation for analysis preservation

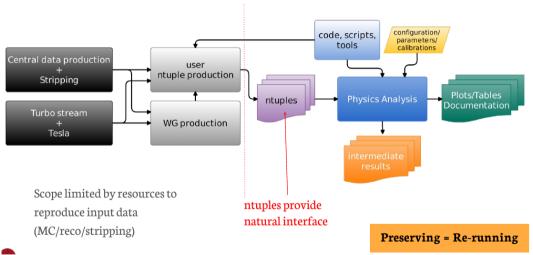
- Reproducibility is a fundamental scientific requirement.
- HEP has special responsibilities, due to large/long term projects.
- HEP AP addresses several problems of knowledge transfer:
 - Collaborative working
 - Knowledge preservation and during review
 - Knowledge transfer to other analysis teams
 - Knowledge transfer to future generations

Publication policies

Nature: authors are required to make materials, data, code, and associated protocols promptly available to readers without undue qualifications.

Status

- Analysis preservation is NOT something naive and trivial.
- O Usually painful to repeat the analysis.
- O Where does the ntuple come from?
- Which version of the software do I use to produce the result?


Domains for Analysis preservation

Preservation = Automatically rerun analysis

- Analysis repository: analysis tools(code), logic, version
- Analysis pipeline: analysis steps
- Runtime environment
- Input data storage

Scope of analysis preservation in LHCb

Tools:Git&GitLab

- https://git-scm.com/
- http://cepcgit.ihep.ac.cn/
- Git submodule&subtree
- GitLab Continuous Integration(GitLab CI)
- GitLab Container Registry

Tools:Pipeline tools

	Simple	Scriptable	Caching	Debugging	Community
Bash	✓	✓	×	×	✓
Make	X	✓	✓	×	✓
Snakemake	✓	✓	✓	✓	✓
Yadage	X	✓	✓	×	×
Luigi	X	✓	×	✓	✓
Fabricate	/	✓	/	✓	×
CWLTool	X	✓	√	✓	X

Tools:Docker(containerized analysis)

- Highly recommend
- https://www.docker.com/
- O Docker is the tool for containerized analysis.
- The developers use Docker to eliminate "Work on my machine" problems when collaborating on code with co-workers.
- Container:using containers, everything required to make a piece of software run is packaged into isolated containers.
- Always run the same, regardless of where it's deployed.

Tools:Chern

- A quality of life tool
- http://chern.readthedocs.io/en/latest/

Tools: REusable ANAlyses (CERN Analysis Preservation)

- REANA is a system that permits to instantiate research data analysis on the cloud. It uses container-based technologies and was born to target the use case of particle physics analyses in LHC collaborations.
- Instantiate workflows on the cloud.
- Manages job queues.
- Manages computing cloud resources.
- O Support for OpenStack, Magnum, Kubernetes, EOS, Docker technologies.

Draft suggestions for CEPC analysis(minimal)

- Repository
 - o complete analysis code on gitlab
 - accessible to the collaboration
- Analysis pipeline
 - Full instructions how to run the analysis
- Runtime environment
 - Instruction of how to set up environment
- Data storage
 - o all input data on somewhere
 - readable by collaboration

Draft suggestions for CEPC analysis: Analysis respository

- Goals:
 - Preserve analysis tools and logic
 - Facilitate collaboration
 - Enable reuse of tools
- Recommendation:
 - Complete analysis code on gitlab
 - Fork&merge workflow
 - Modularize the analysis
 - Use separate repo for results and ANA

Draft suggestions for CEPC analysis: Modularizing projects

- might split responsibilities for different parts of the analysis
- otools can be shared between several analysis

Recommendation:

- One master repo
- include modules into the master
 - o git submodule
 - git subtree

http://winstonkotzan.com/blog/2016/09/26/git-submodule-vs-subtree.html

Draft suggestions for CEPC analysis:Runtime Environment

- Use container
- O Dockerfile kept in analysis repository
- More...

Draft suggestions for CEPC analysis:Input data

- Generator&Mokka data? -> "Official" production.
- Accessible to the whole group with documents to reduce the reuse of CPU time and Disks.
- Marlin data&ntuples (intermediate data)? solution?

Draft suggestions for CEPC analysis:Software

- Mokka&Marlin and etc on gitlab.
- O fork&merge, forbid to use untracked processor.
- Share the tools and make them better together.
- $\, \bigcirc \,$ Present not only results on meeting but also tools.

Conclusion & What to do?

- Conclusion
 - o Analysis preservation will make the life better.
 - Not a lot effort, just try to use the new tools.
- What to do?
 - More details: https://goo.gl/ngAzhn
 - o A finished analysis as demo.
 - More discussion now and via email.

Thanks