Plans for the CEPC CDR -TPC tracker

Huirong Qi, Yulan Li On behalf of the tracker detector subgroup 2017/08/30

Plan for the CDR

- Based on the pre-CDR contents and ILD like version
- List of resources in tracker R&D
 - **IBF** for distortion
 - Alignment and calibration of tracker
- Man power
 - The CEPC Detector 6

- 6.4 Main Tracking Detector – TPC
 - 6.4.1
 - 6.4.2
 - 6.4.3

- ~100 µm position resolution in rq
- Systematics precision (<20 µm internal)

Draft of contents

Draft of the TPC tracker for CEPC CDR

H.R Qi,

May 3, 2017

Contents

1	TPC tracker detector			2
	1.1	Simulation and estimation for key issues		
		1.1.1	Physics requirement of Higgs and Z run	2
		1.1.2	Distortion of Ions backflow	2
		1.1.3	Occupancy of high rates	2
	1.2	Baseli	ne design and mechanics	2
		1.2.1	TPC tracker geometry	2
		1.2.2	Operation gas and high voltage	2
		1.2.3	Electronics readout	2
	1.3	TPC detector module and alignment system		2
		1.3.1	Detector module for CEPC	2
		1.3.2	Alignment using laser system	2
		1.3.3	Software and correction methods	2
2	Cos	t estin	nation	2

Cost estimation z

TPC requirements for CEPC

TPC could be as one tracker detector option for CEPC, 1M ZH events in 10yrs $E_{cm} \approx 250$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation. Of course, it is well for Higgs run too. <u>https://doi.org/10.1088/1748-0221/12/07/P07005</u>

TPC detector concept:

- Motivated by the H tagging and Z
- Main tracker detector with TPC
- ~3 Tesla magnetic field
- ~100 μm position resolution in rφ
- **Systematics precision (<20 μm internal)**
- Large number of 3D points(~220)
- **Distortion by IBF issues**
- □ dE/dx resolution: <5%
- Tracker efficiency: >97% for pT>1GeV

TPC detector concept

Technical challenges for TPC

Ion Back Flow and Distortion :

- ~100 μm position resolution in rφ
- Distortions by the primary ions at CEPC are negligible
- More than 10000 discs co-exist and distorted the path of the seed electrons
- The ions have to be cleared during the ~us period continuously
- Continuous device for the ions
- Long working time

Calibration and alignment:

- Systematics precision (<20 µm internal)
- Geometry and mechanic of chamber
- Modules and readout pads
- Track distortions due to space charge effects of positive ions

Ions backflow in drift volume for distortion

Evaluation of track distortions

700

r/mm

 10^{-}

400

500

600

IBF-0.1%

1000

Drift Length [mm]

2000

500

Possible technical solution

Continuous IBF module:

- Gating device may be used for Higgs run
- Open and close time of gating device for ions: ~ µs-ms
- No Gating device option for Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility

Laser calibration system:

- Laser calibration system for Z-pole run
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Calibrated drift velocity, gain uniformity, ions back in chamber
- Calibration of the distortion
- Nd:YAG laser device@266nm

Continuous IBF prototype and IBF × Gain

TPC prototype integrated with laser system Page - 6

Manpower and activities

- **TPC** detector **R&D** @IHEP (2016~2020)
 - Huirong Qi,
 - Yulian Zhang (PhD,IHEP), Haiyun Wang(PhD,IHEP), Zhiwen Wen(PhD,IHEP)
 - **Prof. Jin Li**
 - □ Funding from MOST and NSFC(~3.5 Million RMB)
- □ Electronics R&D &Tsinghua (2016~2020)
 - Zhi Deng
 - Yiming Cai(PhD,THU), Zhao Mingrui (Master, THU) and three PhDs in electronics lab
 - **Prof. Yuanning Gao, Prof. Yulan Li**
 - □ Funding from NSFC (~2.0 Million RMB)
- □ Inhabitation of IBF using graphene @Shandong Univ.
- Operation gas simulation@Lanzhou Univ.
- **IBF** simulation@...