CDR: Geometry, Software & Performance

Section 1: Physics Requirement

- Physics at CEPC & CEPC Collision environment // Sub-detector technologies should be feasible - within power, robust, stability, requirements - at CEPC collision environment -> to be addressed at Sub-Detector Sections
- Detector Performance Requirement
 - Solid Angle Coverage
 - High Efficiency/Precision Track, Photon Reconstruction in jet environment
 - Lepton ID
 - PiD (Pi-Kaon)
 - o JER
 - B, C-tagging
- Detector Systematic/Monitoring Requirement
 - Energy & Luminosity measurement
 - Alignment Calibration
 - Stability: Mechanic and Response

Section 2: Detector Geometry and Description // To address the requirements mentioned above

- Geometry Description
- Implementation into Geant 4 & Validation (Detector Display and Event Displays)

Section 3: Software & Simulation

- Data Format
- Tracking
- PFA
- Flavor Tagging
- Deep Learning
- Typical performances: sim/reco 1 events

Section 4: Physics Performance (Object + Benchmark Physics Signal Plots)

- Track
 - Efficiency
 - Resolution (D0, Z0, Omega, Phi & Theta)
 - Wrong Sign Probabilities
 - Kshort, J/psi Mass Peak
- Cluster
 - Energy Response, Collection efficiency & Resolution
 - Separation
 - o Pi0 Mass Peak
- Lepton,
 - Single Particle Performance
 - Higgs Recoil Mass Spectrum
 - Higgs->muon Mass Spectrum

- Kaon,
 - Pi-K Separation power
 - o Benchmark Physics & Requirements
- Photon,
 - Single Particle Performance
 - Higgs -> Diphoton Mass Spectrum
- Jets,
 - Higgs->gluon Mass Spectrum
- Heavy Flavor,
 - Higgs->bb, cc, gg, likelihood template distributions
- Tau,
 - Higgs->Tautau Pull Spectrum

Section 5: Conclusion

- Prepared for Higgs
- Basic performances -> refer to Higgs Physics Analysis section...
- Key questions to be addressed (i.e, Systematic control for EW) in the future

//Remarks Not well prepared yet Studies ready