Introductory remarks

João Guimarães da Costa (Beijing)

August 30, 2017

Institute of High Energy Physics Chinese Academy of Sciences

News

- New weekly meeting time:
 - Wednesday, 3 pm Beijing time
- Repository for text (GIT) \rightarrow See Li Gang's talk

• Timescale for CDR:

- Draft text from each subgroup: September 30
 - Shared with others via GIT repository
- First draft for internal review
 - November I (available for CEPC international workshop)

• Next steps for each detector subgroups:

- Need outline structure from each subgroup
- Need specific names of editors, in addition to conveners
- Review detector geometry as defined by simulation group

Agenda

Wednesday,	30 August 2017	
15:00 - 15:10	Introduction 10' Speaker: Joao Guimaraes Costa	•
15:10 - 15:20	CDR Text and Git repository 10' Speaker: LI Gang (EPC.IHEP)	
15:20 - 15:30	Simulation 10' Speakers: Mr. Manqi Ruan (IHEP), Dr. Gang LI (Experimental Physics Division, Institute of High Energy Physics Material: Slides	•)
15:30 - 15:50	Status of dual readout calorimeter work and simulation 20' Speaker: Roberto Ferrari (INFN)	-
15:50 - 16:10	Status of drift chamber work and simulation 20' Speaker: Francesco Grancagnolo (INEN-Lecce)	•
16:10 - 16:30	Status of general simulation integration for IDEA 20' Speaker: Giovanni Tassielli	•
16:30 - 16:40	Calo 10' Speakers: Haijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP), Dr. Jianbei Liu (University of Science and Technology of China)	
16:40 - 16:50	Vertex 10' Speakers: Prof. Qun OUYANG (IHEP), Mr. Xiangming Sun (CCNU), Prof. Meng Wang (Shandong University)	-
16:50 - 17:00	Tracker 10' Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)	-

Next week:

- MDI, magnet and Muon reports
- Discussion of detector requirements

Detector and Physics: Conceptual Design Report

- still about one year May 1, 2017: Monday, P&D meeting of work Preliminary * Decide on editors and timescale today! Establish SVN/git repository area September 30: Text for all subsections finalized Includes R&D results available until this date ***** All text committed to repository October 31: Version for internal review finalized ***** Harmonization of text across chapters * Finalize introduction and other common aspects (references, authors, etc) December 20: Version for external review ready
- March 1, 2018: Release to public

From April Meeting

Extra Slides

Possible CDR outline

- I. CEPC Physics Potential
 - I. Higgs physics
 - 2. Electroweak precision physics

中国科学院高能物理研究所

- 3. Searches for physics beyond the Standard Model
- 4. Flavor physics
- 2. Experimental conditions and detector requirements
 - I. The CEPC experimental environment
 - I. Beam backgrounds, polarization, etc
 - 2. Detector requirements for e+e- physics
 - I. Track momentum and jet energy resolution, flavor tagging, particle identification
 - 3. Basic description of Detector Concepts TPC tracking system (baseline)
- 3. Vertex detectors
- 4. Tracking system
 - I. Detailed tracker concepts
 - I. The TPC tracking system
 - 2. The All-Silicon tracking system
 - 3. The Drift Chamber tracking system
 - 2. Beam induced backgrounds in tracking system
 - 3. Performance

- All-silicon tracking
- Drift chamber and DR calorimeter

Theory group

Preliminari

Possible CDR outline

- 5. Calorimetry
 - I. Particle flow calorimeter
 - I. Hadronic calorimeter

中国科学院高能物理研究所

- 2. Electromagnetic calorimeter
- 2. Dual readout calorimeter
- 3. Calorimeter performance
- 6. Detector magnet system
- 7. Muon system
 - I. Conceptual design of muon system
 - 2. Muon reconstruction algorithm and system performance
- 8. Readout electronics and data acquisition (?)
- 9. CEPC interaction region and detector integration (MDI)
- 10. Physics performance
 - I. Simulation and reconstruction
 - 2. Luminosity measurement
 - 3. Energy measurement
 - 4. Performance of low-level physics observables
 - 5. Detector benchmark processes
- II. Future plans and R&D prospects

Preliminary

Work towards CDR

- Need to integrate work done in **Detector subgroups** with work done by Simulation subgroup
- Decide and review final options for detector to be simulated:
 - This will be our baseline detector!
 - Deviations from "Full Simulation" should be clearly explained in the CDR
 - Need to agree upon details now, before moving with large scale CDR work

Suggestions:

- Discuss within detector groups to decide what designs should be put forward as baseline
- Common meetings between each detector subgroup and simulation subgroup to clarify details
- Decisions need to be documented in **short notes** made available for review by CEPC colleagues (these can then turn into parts of the CDR)
- Detector subgroups should provide manpower to aid on any needed improvements on digitization and geometry
- Integrate international partners in discussions. We are planning one CDR with an integrated structure

Joao

中国科学院高能物理研究所

CLIC: Example of Vertex Section

4 Ve	ertex Detectors	83
4.1	Introduction	83
4.2	Physics Requirements	83
4.3	Simulation Layouts	84
4.4	Performance Optimisation Studies	85
4.4.1	Performance of the Baseline Configurations	86
4.4.2	Dependence on Single-Point Resolution	87
4.4.3	Dependence on Arrangement of Layers	87
4.4.4	Material Budget	89
4.5	Beam-Induced Backgrounds in the Vertex Detector Region	89
4.5.1	Beam-Pipe Layout and Design	90
4.5.2	Hit Densities in the Vertex Region	91
4.5.3	Radiation Damage	92
4.6	Integration, Assembly and Access Scenarios	92
4.6.1	Assembly and Integration	92
4.6.2	Pixel Cooling	93
4.7	Sensor and Readout-Technology R&D	95
4.7.1	Requirements of a CLIC Vertex Detector Sensor	95
4.7.2	Technology Options	95
4.7.3	Vertexing Technological Developments	96

中国科学院高能物理研究所

CLIC: Example of Calorimeter Section

6 Calorimetry	125
6.1 A Particle Flow Calorimeter for TeV Energies	
6.1.1 Tungsten as Absorber for the ECAL and HCAL	
6.1.2 Time Stamping Considerations	
6.1.3 Readout Technologies	
6.2 Electromagnetic Calorimeter	
6.2.1 ECAL Readout Technologies	130
6.2.2 ECAL Prototypes	130
6.2.3 ECAL Testbeam Results	131
6.3 Hadronic Calorimeter	132
6.3.1 Basic Layout	132
6.3.2 HCAL Readout Technologies for Scintillator and Gaseous Options	132
6.3.3 HCAL Test Beam Results	133
6.3.4 Tungsten Design and Engineering Studies	138
6.4 Calorimeter Performance under CLIC Conditions	138
6.4.1 ECAL Performance for High Energy Electrons	139
6.4.2 Timing Resolution	139
6.4.3 Jet Energy Resolution	
6.5 Future Calorimeter R&D for CLIC	

10

Agenda

Wednesday,	3 May 2017	
15:00 - 15:20	Introduction 20' Speaker: Joao Guimaraes Costa	•
15:20 - 15:40	MDI 20' Speaker: Dr. Hongbo ZHU (IHEP)	•
15:40 - 16:00	Vertex 20' Speakers: Prof. Qun OUYANG (IHEP), Mr. Xiangming Sun (CCNU), Prof. Meng Wang (Shandong University)	-
16:00 - 16:20	Tracker 20' Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)	•
16:20 - 16:40	Calo 20' Speakers: Haijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP), Dr. Jianbei Liu (University of Science and Technology of China)	-
16:40 - 17:00	Muon <i>20'</i> Speaker: Prof. Liang Li (Shanghai Jiao Tong University)	-
17:00 - 17:20	Magnet <i>20'</i> Speakers: Mr. Zian ZHU (高能所), Dr. Feipeng NING (高能所)	-
17:20 - 17:40	Simulation 20' Speakers: Mr. Manqi Ruan (IHEP), Dr. Gang LI (Experimental Physics Division, Institute of High Energy Physics	-

Detector Pre-CDR Outline

1	Intro	oduction	1
	1.1	The CEPC-SPPC Study Group and the Preliminary CDR	1
	1.2	The Case for the CEPC-SPPC in China	2
	1.3	The Science in the preCDR	2
	1.4	The Accelerator and the Experiment	3
2	Ove	rview of the Physics Case for CEPC-SPPC	5
	2.1	New Colliders for a New Frontier	7
	2.2	The Electroweak Phase Transition	18
	2.3	Naturalness of the Electroweak Scale	27
	2.4	Dark Matter	40
3	Higg	as Physics at the CEPC	57
	3.1	Introduction	57
	3.2	Simulation and Reconstruction	59
		3.2.1 Detector Simulation and Software Chain	59
		3.2.2 Detector Performance	60
	3.3	Higgs Boson Measurements	62
		3.3.1 Production Cross Sections of Signal and Background Processes	62
		3.3.2 $\sigma(ZH)$ and m_H Measurements	64
		3.3.3 Production Rates of Individual Higgs Boson Decay Modes	68
		3.3.4 Measurements of Branching Ratios	76
		3.3.5 Measurement of Higgs Boson Width	77
		3.3.6 Summary of the Higgs Measurements	78

中国科学院高能物理研究所

4.94.4			
	3.4	Coupling Extractions and Combinations	80
		3.4.1 Coupling Fits	80
		3.4.2 Higgs Self-coupling	84
	3.5	Implications	86
4	Elec	troweak Precision Physics at the CEPC	97
	4.1	W, Z Measurements at the CEPC	97
		4.1.1 Z Pole Measurements	98
		4.1.2 W Mass Measurement	103
	4.2	CEPC Electroweak Oblique Parameter Fit	105
		4.2.1 The Precision Challenge for Theorists	107
		4.2.2 A General To Do List for a Successful Electroweak Program	108
	4.3	Implications for New Physics	110
		4.3.1 Natural Supersymmetry and EWPT	110
		4.3.2 Composite Higgs scenarios	113
		4.3.3 Fermionic Higgs Portal	114
5	Flav	or Physics at the CEPC	125
	5.1	Introduction	125
	5.2	Beauty and Charm Transitions	127
	5.3	Very Rare Decays	129
	5.4	CPV in $ au$ Decays and Production	130
	5.5	Charged Lepton Flavor Violation	133
	5.6	Summary	136
6	The	CEPC Detector	145
	6.1	Detector Overview	145
	6.2	Vertex Detector	148
		6.2.1 Performance Requirements and Detector Challenges	148
		6.2.2 Baseline Design	148
		6.2.3 Detector Performance	149
		6.2.4 Sensor Options	152
		6.2.5 Mechanics and Integration	154
		6.2.6 Critical R&D	155
		6.2.7 Summary	156
	6.3	Silicon Tracker	157
		6.3.1 Baseline Design	157
		6.3.2 Tracker Performance	160
		6.3.3 Critical R&D	160
	6.4	Main Tracking Detector - TPC	163
		6.4.1 Design and Challenges	163
		6.4.2 Alignment and Calibration	173
		6.4.3 Critical R&D	174
	6.5	Calorimetery System	181
		6.5.1 Electromagnetic Calorimeter	181
		6.5.2 Hadronic Calorimeter	189
	6.6	Muon System	200
		6.6.1 Baseline Design	200

Detector Pre-CDR Outline

		6.6.2 Technologies	203
		6.6.3 Future R&D	205
	6.7	Detector Magnet System	206
		6.7.1 General Design Considerations	206
		6.7.2 Solenoid Design	207
		6.7.3 Coil Manufacturing and Assembly	213
		6.7.4 Ancillaries	213
		6.7.5 Magnet Tests and Field Mapping	214
		6.7.6 Iron Yoke Design	214
		6.7.7 Future R&D	216
	6.8	Machine-Detector Interface	217
		6.8.1 Interaction Region Layout	217
		6.8.2 Detector Backgrounds	218
		6.8.3 Luminosity Instrumentation	223
		6.8.4 Mechanical Integration	224
	6.9	Detector Facilities at the Experiment Area	225
		6.9.1 General Considerations	225
		6.9.2 Underground Caverns and Access	225
		6.9.3 Surface Building and Facilities	226
		6.9.4 Safety Features	228
7	New	Physics Searches at SPPC	237
	7.1	Supersymmetry	237
	7.2	New Resonances	251
	7.3	New Phenomena of Standard Model Physics	264
	7.4	Running Electroweak Couplings as a Probe of New Physics	277
	7.5	B+L Violation at High Energies	280
	7.6	Higgs and New Physics	283
8	Futu	re Heavy-ion and Electron-Ion Collision Program	335
	8.1	Introduction	335
	8.2	QCD and Strong Interaction Matter	338
	8.3	Bulk Properties of Matter in Heavy-ion Collisions	341
	8.4	Jet Quenching in Heavy-ion Collisions	345
	8.5	Medium Nodification of Open Heavy Mesons	354
	8.6	J/ψ Production	356
	8.7	Summary	359
	8.8	Physcis Perspective at Future Electron-Proton or Electron-Ion Collider	s 360
9	Sum	imary	381
A	Inter	national Review	383
	A.1	Report of Review of CEPC-SppC Detector preCDR	384
		A.1.1 Introduction	384
		A.1.2 Observations	384
		A.1.3 Addressing the questions in the charge	384
	A.2	R&D topics suggested by the Committee	386
	A.3	Committee members	389 3

中国科学院高能物理研究所

CLIC Detector CDR - an example

Contents

Table of Contents			
Execu	Executive Summary 5		
1 CI	LIC Physics Fotential	15	
1.1	Introduction	15	
1.2	Higgs	16	
1.2.1	The Higgs Boson in the Standard Model	18	
1.2.2	The Higgs Bosons of the MSSM	19	
1.2.3	Higgs Bosons in other Extensions	22	
1.3	Supersymmetry	23	
1.3.1	CLIC potential for Heavy SUSY	25	
1.3.2	Recenstructing the High-Scale Structure of the Theory	27	
1.3.3	Testing the Neutralino Dark Matter Hypothesis	28	
1.4	Higgs Strong Interactions	30	
1.5	Z', Contact Interactions and Extra Dimensions	33	
1.6	Impact of Ream Polarisation	37	
1.7	Precision Measurements Potential	40	
1.8	Discussion and Conclusions	42	
2 (1	JC Experimental Conditions and Detector Requirements	51	
2.1	The CLIC Experimental Environment	51	
2.1.1	The CLIC Beam	51	
2.1.2	Beam-Induced Backgrounds	52	
2.1.3	Beam Polarisation at CLIC	56	
2.2	Detector Requirements for e ⁺ e ⁻ Physics in the TeV Range	57	
2.2.1	Track Momentum Resolution	57	
222	let Energy Resolution	58	
2.2.3	Impact Parameter Resolution and Flavour Tagging	59	
2.2.4	Forward Coverage	50	
2.2.5	Lepton ID Requirements	60	
2.2.6	Summary of Requirements for Physics Reconstruction	61	
2.3	Basic Choice of Detector Concepts for CLIC	61	
2.3.1	The Particle Flow Paradigm	61	
2.3.2	Detector Design Considerations	62	
2.4	Impact of Backgrounds on the Detector Requirements	63	
2.4.1	Impact on the Vertex Detector	63	
2.4.2	Impact on the Central Tracking Detector	63	
2.4.3	Backgrounds in the ECAL and HCAL	64	
2.4.4	Background Summary	66	

2.5 Timing Requirements at CLIC	6
2.5.1 Timing in Physics Reconstruction at CLJC	8
2.6 Detector Benchmark Processes	0
2.6.1 Light Higgs Production : $e^+e^- \rightarrow hv_ev_e$	0
2.62 Heavy Higgs Production	0
2.6.3 Production of Right-Handed Squarks	1
2.64 Charg no and Neurralino Pair Production	1
2.65 Slepton Production	2
2.6.6 Top Pair Production at 500 GeV	2
1 CHODING COMMENT	5
	-
	5
	5
	5
	6
3.5 Detector Parameters	0
4 Vertex Detectors \$	3
4.1 Introduction	3
4.2 Physics Requirements	3
	4
4.4 Performance Optimisation Studies	5
	6
-	7
4.4.3 Dependence on Arrangement of Layers	7
4.4.4 Material Budget	9
	9
4.5.1 Beam-Pipe Layout and Design	0
4.5.2 Hit Densities in the Vertex Region	1
4.5.3 Redation Damage	2
4.6 Integration, Assembly and Access Scenarios	2
4.6.1 Assembly and Integration	0.
4.62 Pixel Cooling	3
	5
4.7.1 Requirements of a CLIC Vertex Detector Sensor	5
4.7.2 Technology Options	5
The second secon	
4.7.3 Vertexing Technological Developments	6
	6
5 CLIC Tracking System 10	6
5 CLIC Tracking System 10 5.1 Introduction 10	6 1
5 CLIC Tracking System 10	6 1 1

中国科学院高能物理研究所

CLIC Detector CDR - an example

5.2.2	The All-Silicon CLIC_SiD Tracking System
5.3	Beam-Induced Backgrounds in the Tracking Region
5.3.1	Occupancies in the Barrel Strip Detectors of CLIC_ILD
5.3.2	Occupancies in the Forward Strip Detectors of CLIC_ILD
5.3.3	Occupancies in the TPC
5.3.4	Radiation Damage in the Silicon Strip Detectors of CLIC_ILD
5.4	Performance
5.4.1	Tracking Performance of the TPC-based CLIC_ILD Tracking System
5.4.2	Tracking Performance of the All-Silicon CLIC_SiD Tracking System
	alorimetry 125
6.1	A Particle Flow Calorimeter for TeV Energies
6.1.1	Tungsten as Absorber for the ECAL and HCAL
6.1.2	Time Stamping Considerations
6.1.3	Readout Technologies
6.2	Electromagnetic Calorimeter
6.2.1	ECAL Readout Technologies
6.2.2	ECAL Prototypes
6.2.3	ECAL Testbeam Results
6.3	Hadronic Calorimeter
6.3.1	Basic Layout
6.3.2	HCAL Readout Technologies for Scintillator and Gaseous Options
6.3.3	HCAL Test Beam Results
6.3.4	Tungsten Design and Engineering Studies
6.4	Calorimeter Performance under CLIC Conditions
6.4.1	ECAL Performance for High Energy Electrons
6.4.2	Timing Resolution
6.4.3	Jet Energy Resolution
6.5	Future Calorimeter R&D for CLIC
7 D	etector Magnet System 145
7.1	
7.2	Introduction
7.3	Solenoid Coil Design
7.4	
7.5	Conductor Options
7.6	The Ring Coils on the Endcap Yoke of the CLIC_ILD Detector
7.7	· · ·
1.1	Magnet Services and Push-Pull Scenario
8 M	luon System at CLIC 155
8.1	Introduction
8.1.1	Muon System Requirements

8.1.2 Eackground Conditions	
8.2 Conceptual Design of the Muon System	5
8.2.1 Muon System Layers	6
8.2.2 Muon Layer Design	7
8.3 Muon Reconstruction Algorithm and System Performance	9
8.3.1 Reconstruction Algorithm	0
8.3.2 Reconstruction Performance	0
9 Very Forward Calorimeters 16	1
9.1 Introduction	1
9.2 Optimisation of the Forward Region	3
9.3 The Luminosity Calorimeter (LumiCal)	4
9.3.1 Remarks on systematic uncertainties to the luminosity measurement	$\overline{7}$
9.4 The Beam Calorimeter (BeamCal)	7
10 Readout Electronics and Data Acquisition System 17	1
10.1 Introduction	1
10.2 Overview of Subdetectors and their Implementation Scheme	2
10.2.1 Overview of Subdetectors	2
10.2.2 Implementation Example for a Pixel Detector	2
10.2.3 Implementation Example for the TPC Pad Readout	4
10.2.4 Implementation Example for the Analog Calorimeter Readout	5
10.3 Power Delivery and Power Pulsing	6
10.3.1 Metivation	6
10.3.2 Implementation of Powering Schemes for CLIC Detectors	7
10.3.3 Stability and Reliability Issues	8
10.4 DAQ Aspects	90
10.5 Summary	51
11 CLIC Interaction Region and Detector Integration 18	5
11.1 Introduction	5
11.2 Detector Layout	5
11.2.1 Overal. Dimensions and Weights	
11.2.2 Magnets Shielding and the Return Yoke	
11.2.3 Services Integration	
11.3 Push Pul. Operation	
11.4 Underground Experimental Area	
11.5 Forward Region	
11.5.1 Forward Region Layout	
11.5.2 Alignment	
11.5.3 QD0 Stabilisation Requirements	ю
11.6 Detector Opening and Maintenance	16

CLIC Detector CDR - an example

241

249

12 Physics Performance

中国科学院高能物理研究所

12 Physics Performance	201
12.1 Simulation and Reconstruction	201
12.1.1 Event Generation	201
12.1.2 Detector Simulation	202
12.1.3 Event Reconstruction	202
12.1.4 Treatment of Background	202
12.2 Luminos:ty Spectrum	203
12.2.1 Lumnosity Spectrum Measurement using Bhabha Events	203
12.2.2 Systematic Effects due to Uncertainty of the Luminosity Spectrum	205
12.3 Performance for Lower Level Physics Observables	205
12.3.1 Particle Identification Performance	205
12.3.2 Muon and Electron Energy Resolution	206
12.3.3 JetReconstruction	208
12.3.4 Flavour Tagging	212
12.4 Detector Benchmark Processes	213
12.4.1 Light Higgs Decays to Pairs of Bottom and Charm Quarks	213
12.4.2 Light Iliggs Decay to Muons	217
12.4.3 Heavy Higgs Production	220
12.4.4 Production of Right-Handed Squarks	223
12.4.5 Slepton Searches	226
12.4.6 Chargino and Neutralino Production at 3 TeV	230
12.4.7 Top Pair Production at 500 GeV	234
12.5 Summary	237

13 Future Plans and R&D Prospects

13.1 Introduction			
13.2 Activities for the next Project Phase			
13.2.1 Simulation Studies and Detector Optimisation			
13.2.2 Physics at CLIC			
13.2.3 Software Development			
13.2.4 Vertex Detector			
13.2.5 Silicon Tracking			
13.2.6 TPC-based Tracking			
13.2.7 Calorimetry			
13.2.8 Electronics and Power Delivery			
13.2.9 Magnet and AneiLary Systems			
13.2.10 Engineering and Detector Integration			
Summary 24			

A Acronyms

251

B Si	imulation and Reconstruction Parameters	255
B.1	PFO Lists at 3 TeV	255
B.2	PFO Lists at 500 GeV	257
B.3	PYTHIA Parameters	258
сс	ost Methodology for a CLIC Detector	259
C.1	Introduction	259
C.2	Scope of Detector Costing	259
C.3	Guiding Principles	259
C.4	Relative Distribution of Cost among the Main Detector Components	260
C.5	Cost Sensitivity Analysis	261

Appendix