

Dual-Readout Calorimetry @ RD_FA Status Report

Roberto Ferrari on behalf of RD_FA/DR collaboration 30 August 2017

a) RD52 testbeam at CERN with a small e.m. module

b) Work in progress with montecarlo simulations

SiPM advantages:

- compact readout (no fibres sticking out)
- longitudinal segmentation possible
- operation in magnetic field
- larger light yield (# of Čerenkov p.e. limits resolution)
- very high readout granularity \rightarrow particle flow "friendly"

SiPM (potential) disadvantages:

- signal saturation (digital light detector)
- cross talk between Čerenkov and scintillation signals
- dynamic range
- instrumental effects (stability, afterpulsing, ...)

RD52 SiPM Readout

New SiPM.s : a) larger dynamic range: from 50x50 μm^2 , 400 cells $\rightarrow 25x25 \ \mu m^2$, 1600 cells b) lower PDE (lower fill factor)

 \rightarrow avoid saturation ?

c) staggered fibre layout (readout at two different planes) \rightarrow avoid light leakage ?

Data taking w/ electrons and muons (energy scans and position scans)

2017 Testbeam Layout

Shower Containment (MC) - 20 GeV electrons

Centered events (MC) : ~43% shower containment

containment.vs. impact point (MC)

Sampling Fraction (MC) – 20 GeV electrons

Scintillating fibres: ~5.5%

Energy in hottest S fibre

Cherenkov fibres: ~6.2%

Energy in hottest C fibre

Data Selection and Tagging

Preshower detector and Muon counter: select electrons or muons

Delay Wire Chamber: select events in central region

RD52 Preliminary Results (2017)

64 Hamamatsu SiPM 1x1 mm² 25x25 μm² cell 1600 cells nominal detection efficiency 25%

50 GeV electron beam

Preliminary Results (2017) – Cherenkov Signals

Number of Photoelectrons per GeV.vs. Beam Energy

→ no saturation in Cherenkov signals

→ average shower containment independent of energy

Preliminary Results (2017) – Scintillation Signals

*** Take care: bias voltage lowered by $5 V \rightarrow PDE$ very low! ***

Geant4 Resolution(s) (e.m. performance)

Geant4 e.m. Performance

Energy deposition and p.e. number fluctuations

Scintillation: ~5500 p.e. / GeV → resolution driven by fluctuations in energy depositions

Cherenkov fluctuations

Cherenkov: ~108 p.e. / GeV \rightarrow resolution driven by fluctuations in p.e. number

$$\frac{\sigma}{E} = 2.7\% \times \frac{\sqrt{1/0.113}}{\sqrt{E}} = \frac{8.0\%}{\sqrt{E}}$$

E.M. Resolution(s)

Work started ...

10-20 GeV protons simulated

Need production of scintillation light (Birks saturation effects in scintillation)

Still issues in understanding first results ...

News asap

Preliminary version distributed for internal feedback

Still missing few things

 \rightarrow release it within this week

Contents

1	Introduction	2
2	Dual-Readout Calorimetry	3
3	Layout and Mechanics3.1Layout	4 4 5
4	DREAM/RD52 Prototype Studies 4.1 Electromagnetic Performance 4.2 Hadronic Performance 4.3 e/π Separation	5 5 6 11
5	Sensors and Readout Electronics5.1Sensor Choice5.2Front-End Electronics and Readout	13 16 16
6	Monte Carlo Simulations6.1 em Performance6.2 Short Term Planning and Open Issues	16 16 18
7	Summary and conclusion	18

BACKUP

Dual-Readout Calorimetry

Hadronic showers develop both e.m. and hadronic components that are sampled with different efficiency

Electromagnetic Shower Fraction, f_{a}

f_{em} changes with energy and type of "mother" particle and with age ("depth") of shower

Idea: use two independent processes (scintillation and Čerenkov light emission) having very different e/h values to eliminate f_{em}

$$S = [f_{em} + (h/e)_{s} \times (1 - f_{em})] \times E$$
$$C = [f_{em} + (h/e)_{c} \times (1 - f_{em})] \times E$$

How it works

Dual-Readout w/ Sampling Fibre Calorimeters

RD52 Single-Particle Hadronic Resolution

- lateral leakage

jet energy resolution ~ few % at ~100 GeV

(4th Concept Detector LOI quotes $30\%/\sqrt{E}$ for jets)

Jet resolution should also be studied coupled w/ tracking information (high granularity \rightarrow *"particle-flow friendly")*

Dual Readout at Work

