

ATLAS SUSY STUDY FROM IHEP

Xuai Zhuang (庄胥爱)

xuai.zhuang@cern.ch

IHEP, Beijing, China

Nov. 3 2017 创新团队年会

SM and Beyond

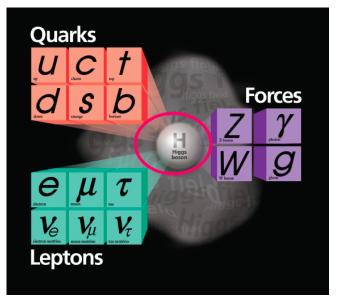
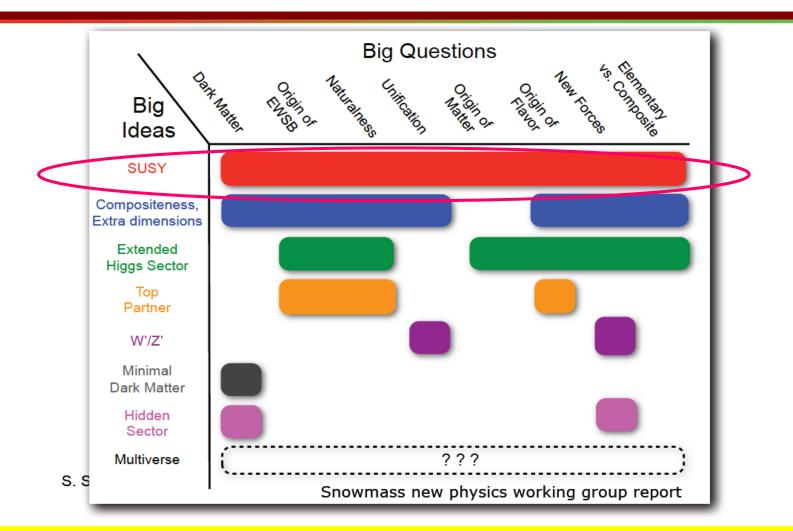


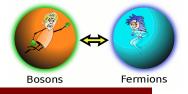
Photo: A. Mahmoud François Englert

Photo: A. Mahmoud Peter W. Higgs



The Nobel Prize in Physics 2013 François Englert, Peter Higgs

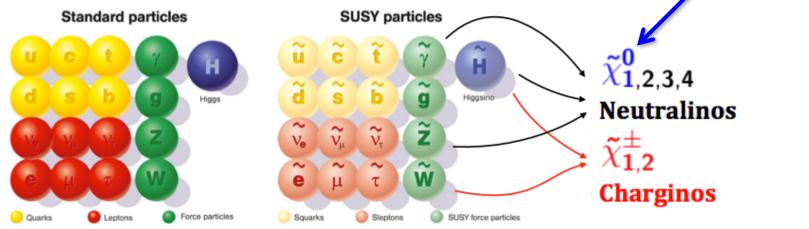
- Higgs boson observed, SM fits the experimental data very well → big success in EW scale
- While has problem in Planck scale:
 - Naturalness and "hierarchy" problem
 - Unification of gauge coupling
 - Dark Matter


Need a more fundamental theory in which SM is only a low-energy approximation → New Physics

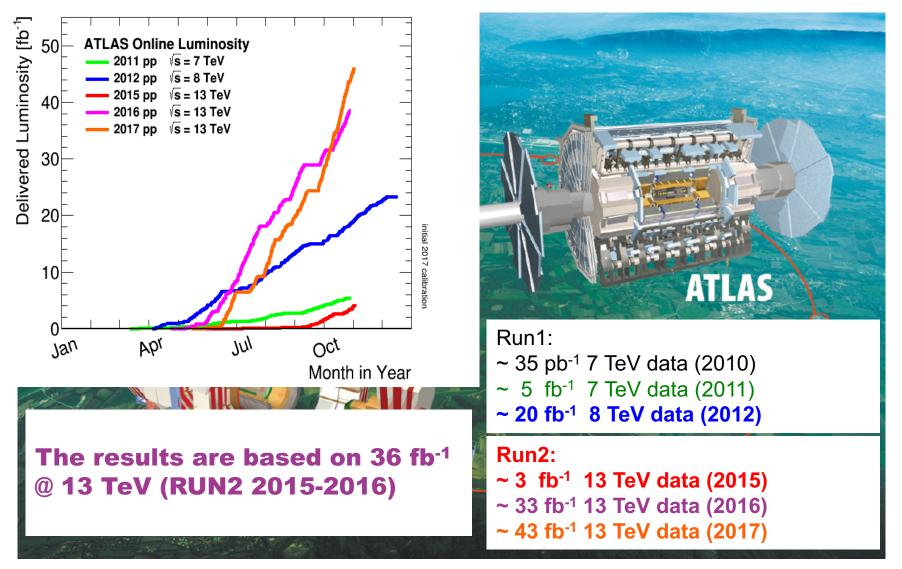
New Physics beyond the SM

If SUSY is at TeV scale, it will be produced copiously at LHC
 SUSY search is one of the most hot topic at LHC and beyond

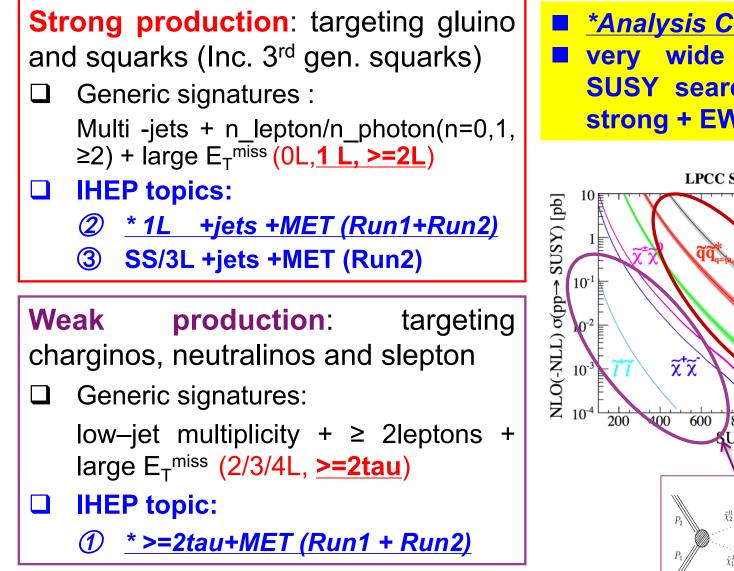
SUSY Introduction



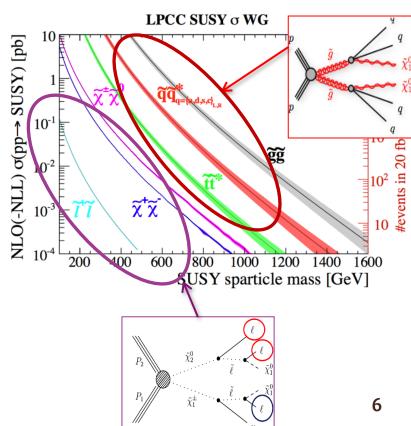
A symmetry which unified fermions (matter) and bosons (forces) -> A fundamental theory


Conserved R parity (RPC): (originally introduced for stability of proton) $R = (-1)^{3(B-L)+2S}$ R=+1 (SM) R=-1 (SUSY)

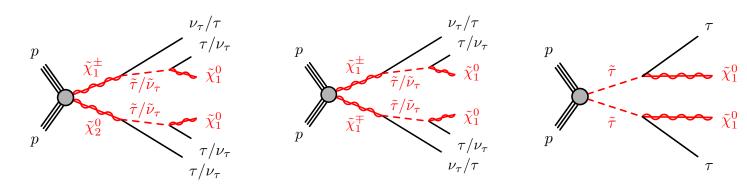
- SUSY particles produced/annihilated in pairs
- Lightest SUSY particle (LSP) stable (DM candidate)
- Typical signature: jets/leptons/photons + MET


Violated R parity (RPV): no Dark Matter candidate

Since 2010, ATLAS&CMS have invested huge efforts in SUSY search @LHC : Great Luminosity recorded



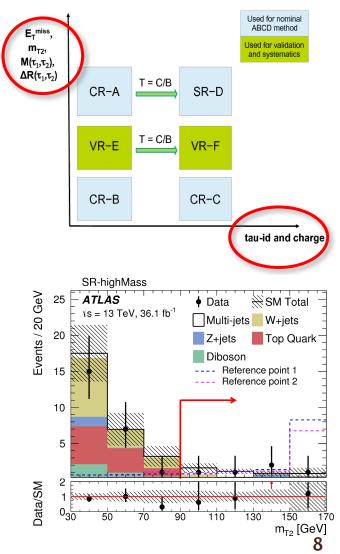
SUSY Search Topics @ IHEP


*Analysis Contacts

very wide coverage on SUSY search from IHEP: strong + EW

[1] EWK-2tau SUSY search

- Run2
- Charginos and neutralinos are superpartners of the EW gauge bosons and Higgs bosons
- Naturalness suggests charginos and neutralinos should be light, could be the dominant SUSY production in LHC
- IHEP member firstly proposed the search for gaugino and stau with final state: 2tau + MET, which is also the first search in LHC experiment.
- IHEP play a leading role: contact person & editor/approval talks


Results

- **2 SRs** targeting different scenarios and mass parameter regions: 1 for low-Mass and 1 for high-Mass
- Main backgrounds:
 - Fake tau: W (normalized MC to data in WCR) and multi-jet (ABCD method)
 - Real tau: Diboson (MC simulation)

ABCD method:

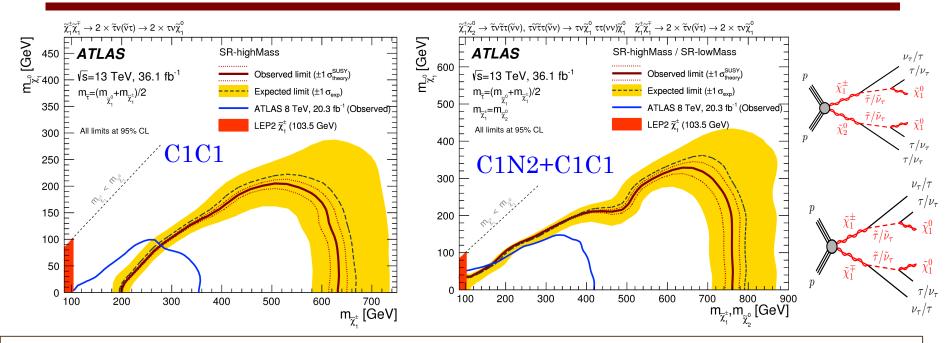
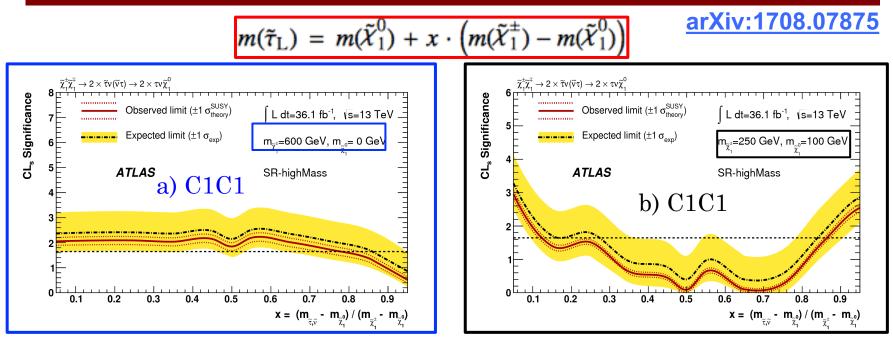

- Extrapolation performed from <u>A to D</u> through TF (D = A * C/B)
- Validation Region (Multi-jet VR-EF): used for validation and systematics
- Good data/SM estimation in validation regions
- No significant excess in SRs, so set exclusion limit

Illustration of "ABCD" method

Exclusion Limits

arXiv:1708.07875

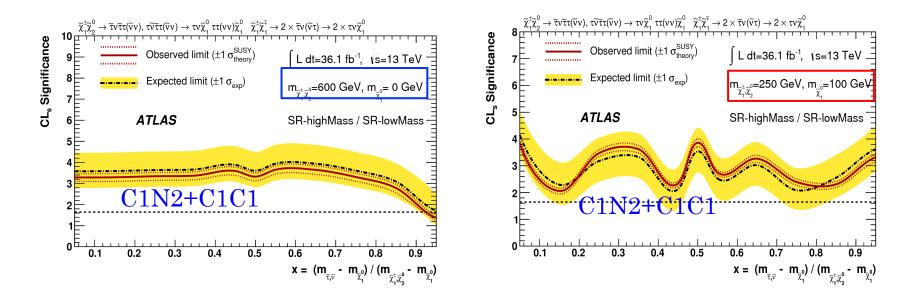


The results arXiv:1708.07875 have been submitted to EPJC and showed at LHCP2017 conference

- C1N2+C1C1 production: C1/N2 mass up to 760 GeV excluded for massless N1
- Wino-like Chargino (C1C1) production : C1 mass up to 630 GeV excluded for a massless N1

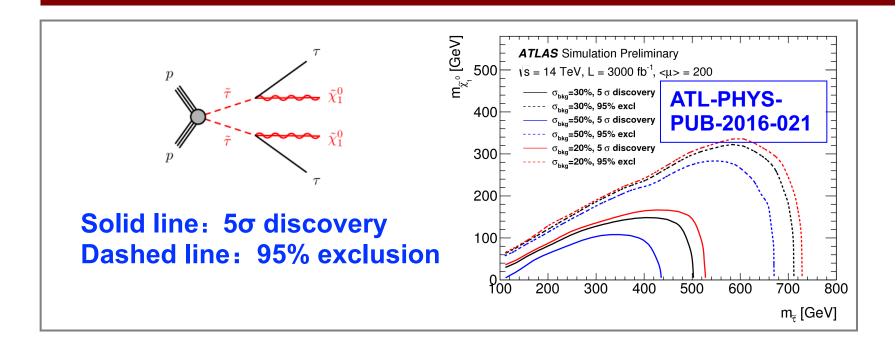
Direct stau search for 13 TeV data is still going-on, first sensitivity at 95% from LHC by end of 2017?

The CLs significance as a function of x



- a) When only C1C1 production is considered, the benchmark scenario with <u>large mass-splitting (600,0)</u> can be excluded for **x up** to 0.75. For larger values of x, the pT spectra of the tau from the chargino decay become very soft.
- b) The <u>compressed benchmark scenario</u> (250,100) can only be excluded for the extreme cases with x = 0.05 or x = 0.95 since the mT2 requirement is more effective for models with large masssplittings between C1 or the staus and N1.

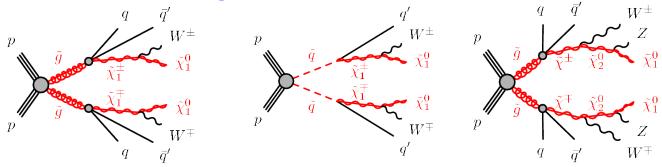
The CLs significance as a function of x


arXiv:1708.07875

 $m(\tilde{\tau}_{\mathrm{L}}) = m(\tilde{\chi}_{1}^{0}) + x \cdot \left(m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0})\right)$

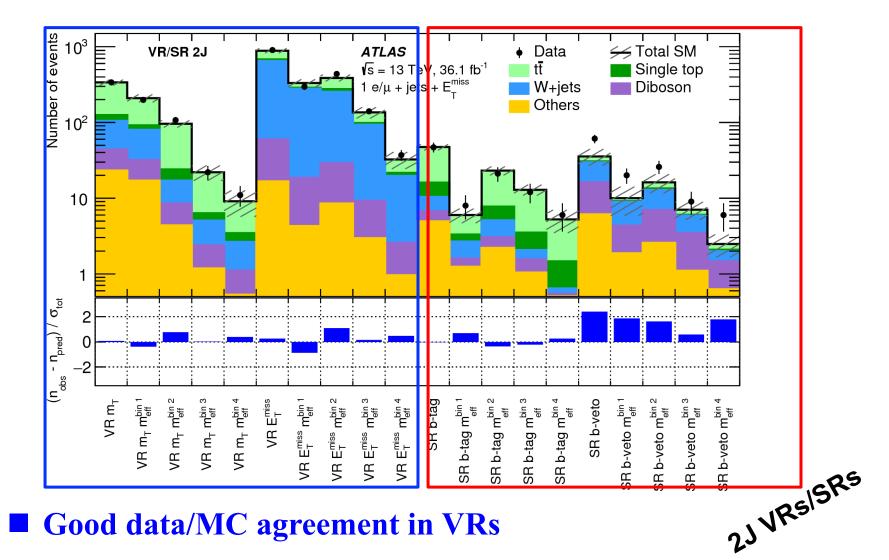
For <u>combined production of C1C1 and C1N2</u>, the same general features are observed, but due to the higher signal yields with respect to C1C1 production alone, both benchmark scenarios can be excluded for all considered values of x.

Direct stau upgrade study



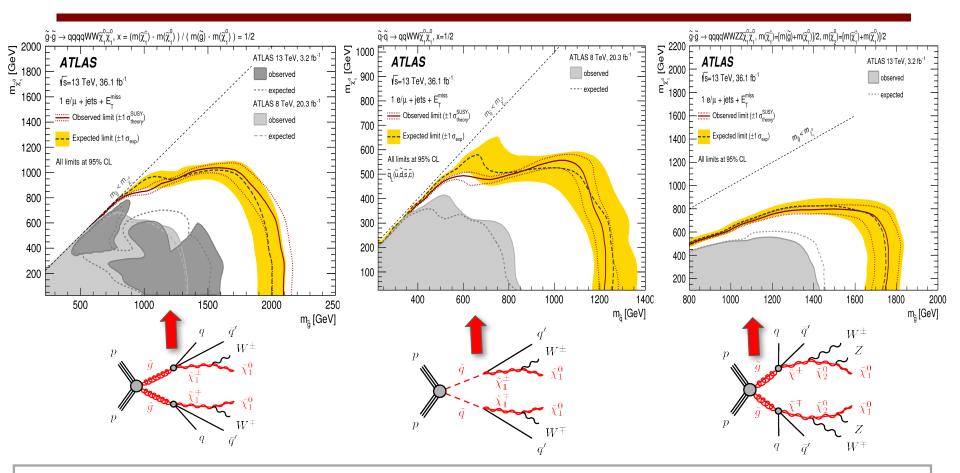
- The direct stau search sensitivity has been studied for HL-LHC (14TeV 3000 fb⁻¹) at last year (ATL-PHYS-PUB-2016-021)
- For a massless LSP, the 5σ discovery sensitivity (exclusion) reaches up to 500 (700) GeV in stau mass (30% syst.).
- The ditau trigger for upgrade study will complete soon, which will contribute to upgrade TDAQ TDR (end by mid. of Dec.)

upgrade


[2] 1L SUSY search

■ Search for gluinos/squarks decaying via charginos and neutralinos with 1I + jets + MET → hot topic for first data due to large xsec and low bg from lepton requirement

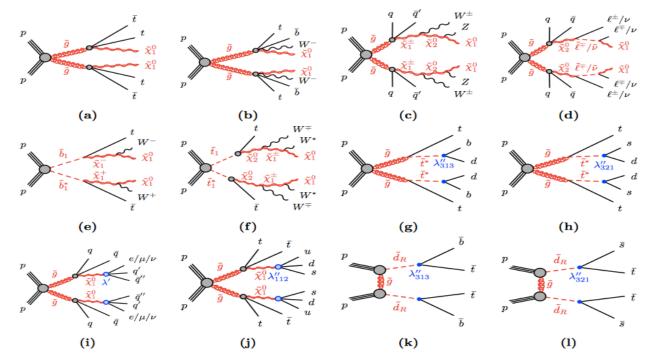
- 5 SRs defined targeting different search scenarios :
 - 4 exclusive SRs targeting the gluino/squark one step models.
 - 2J SR (compressed), 4J high-x SR (LSP=60, x~1), 4J low-x SR (LSP=60, x~0), 6J SR (x=0.5)
 - Each SR binned with b-tag/b-veto and meff, simultaneous fit for 28 bins
 - 1 SR (9J SR) targeting gluino two step model and pMSSM.
- Main backgrounds: ttbar and W+jets, normalized MC to data in TCR and WCR, and validated in VRs


Results

• No significant excess in all SRs \rightarrow Set exclusion limit

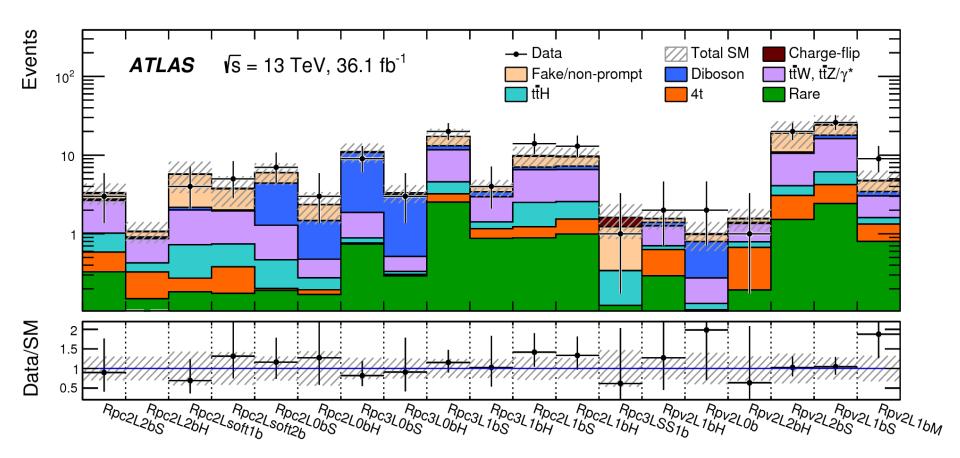
Exclusion Limits

arXiv:1708.08232

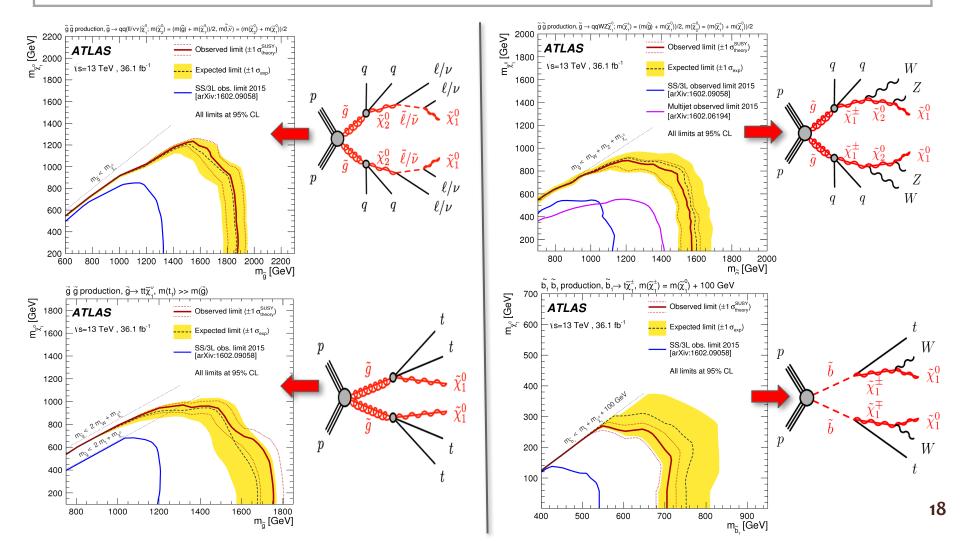


- Gluino (squark) masses up to 2.1 TeV (1.25 TeV) are excluded for low neutralino masses (≤ 900 GeV or ≤ 500 GeV)
- IHEP made a leading contribution (contact person/ contact editor)
 15

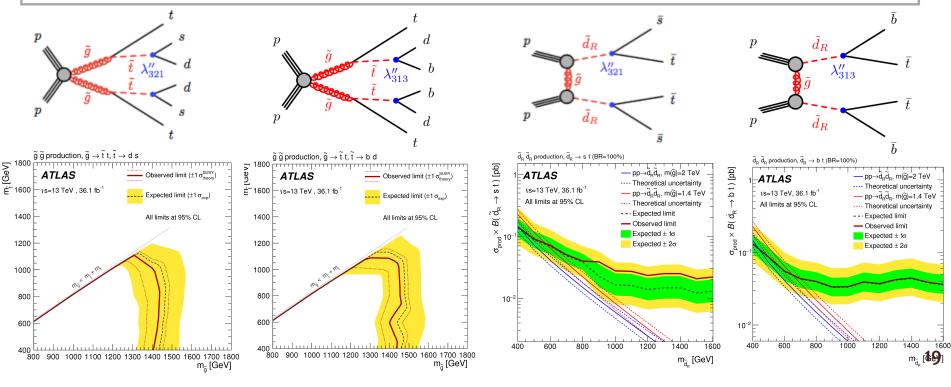
[3] SS/3L SUSY search


Run2

- Search for squarks/gluinos via long decay chain in SS/3L final states
 - Sensitive for a wide range of models
 - Very clean channels with only tiny SM bg (mainly top+V, diboson, triboson) → A good tag for new physics
- 13 RPC+6 PRV SRs defined, targeting specific scenarios
- Main backgrounds:
 - diboson and ttV: estimated from MC simulation, validated in VRs.
 - Fake background and charge flip: estimated in data


Results

No significant excess observed in SRs



Exclusion Limits

I Gluino mass <1.6-1.87 TeV and LSP mass < 850-1200 GeV are excluded for gluino pair production. ~b mass < 700 GeV excluded</p>

- Gluino mass <1.3 TeV and LSP mass < 1 TeV excluded in RPV scenario.</p>
- Right-handed down squark masses are probed up to md̃_R ≈ 500 GeV in RPV scenarios.
- IHEP mainly contributed in RPC SR definition and main background estimation in data.

IHEP contributions and publications

Electroweak SUSY search with taus: <u>contact person/editor</u>

- [contact editor] Run2 signature paper: arXiv:1708.07875 (submitted to EPJC)
- [contact editor] Run2 CONF NOTE: ATLAS-CONF-2017-035 [LHCP17]
- [Ongoing] Run2 direct stau analysis: aiming for Moriond 2018 paper/CONF
- [Ongoing] Run2 Wh analysis: aiming for summer 2018 CONF/end run2 paper
- [Ongoing] Direct stau upgrade study: aiming for upgrade TDAQ TDR
- [Ongoing] Run2 2tau signature analysis: aiming for end of run2 paper
- Inclusive SUSY search (+EWK) with 1 lepton: <u>contact person/editor</u>
 - [contact editor] Run2 signature paper: arXiv:1708.08232 (accepted by PRD)
 - [Ongoing] Run2 analysis with EWK-1L2Jets: aiming for end of run2 paper
 - [Ongoing] Run2 signature analysis: aiming for end of run2 paper
- Inclusive SUSY search with SS/3L: <u>editor/approval talks</u>
 - Run2 signature paper: JHEP09 (2017) 084
 - Run2 CONF NOTE: ATLAS-CONF-2017-030 [LHCP17]
 - [Ongoing] Run2 signature analysis: aiming for end of run2 paper
- Performance work at next slide
- Published 3 paper, 2 CONF notes in 2017, contact editors for 3 of them
- Ongoing 7 analyses aiming for 2018 paper/CONF or end of run2 paper

Paper CONF note Ongoing

Performance & Roles in ATLAS

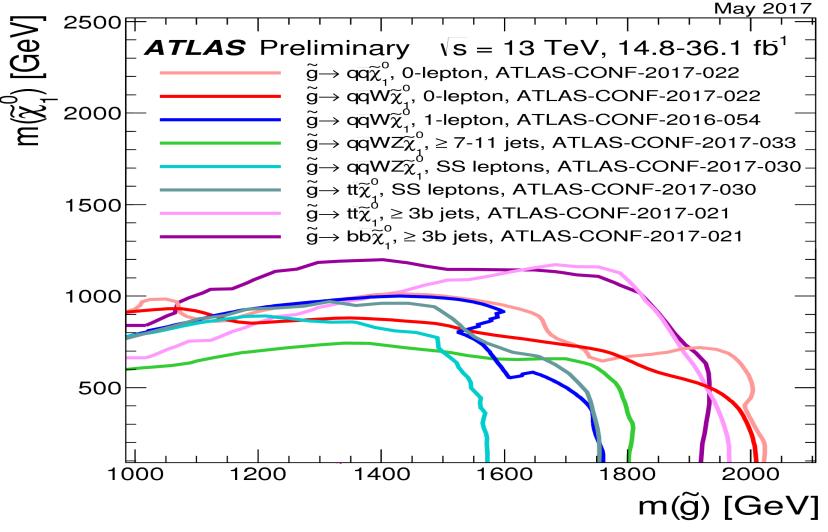
Tau performance: 3 students + 1 postdoc + 2 staffs

- Institute commitment on tau (agreed by tauCP conveners, details are in discussion)
- Tau substructure measurement (preliminary recommendation is ready, <u>talk</u> in WS)
- Tau AFII recommendation (first study from tauCP group)
- MET performance: 1 staff +1 student
 - PU suppression in CST; jet pt optimization in MET
- **Pixel performance** on track efficiency monitoring : 1 postdoc

HistFitter expert

 HistFitter serves as the official statistical analysis tool for the whole ATLAS SUSY group and is widely used by many other analyses. The expert is called for the software development and user help.

SUSY signal/HEPdata contact

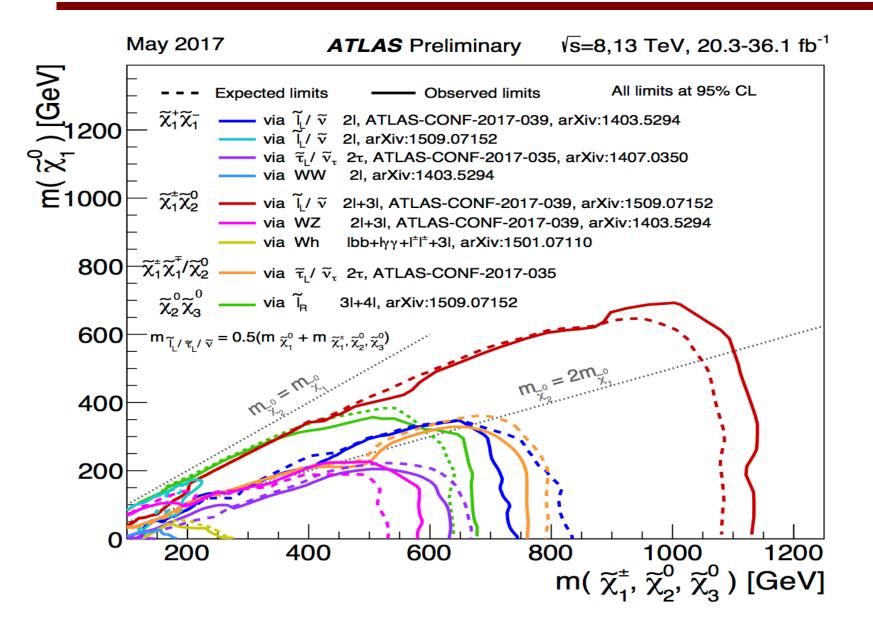

- Taking care of the signal cross-section /Feynman diagram/ HEP data for the whole ATLAS SUSY group.
- **SUSY EWK subgroup convener** (Apr. 2015 Mar. 2016)
- **CB** Chair Adversary Group member (Jan. 2016 Dec. 2017)
- **Editorial Board member**: stop 1L paper, CONF note; stop to stau conf note;

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

May 2017								$\sqrt{s} = 7, 8, 13 \text{ TeV}$
Model	e, μ, τ, γ	Jets J		$\int \mathcal{L} dt [\text{fb}]$	¹] Mass limit	$\sqrt{s} = 7,$	8 TeV $\sqrt{s} = 13$ TeV	Reference
$\begin{array}{c} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{\chi}, \bar{\chi} \rightarrow q \bar{\chi} \bar{\chi}, \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \bar{\chi} \rightarrow \bar{\chi} \bar{\chi} \bar{\chi} \rightarrow \bar$	mono-jet 0 $3 e, \mu$ 0 $1-2 \tau + 0-1 \ell$ 2γ γ $2 e, \mu$ (Z)	-10 jets/3 b 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 b 2 jets 2 jets mono-jet	 Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3		1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
$\begin{array}{c} \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow t \overline{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow t \overline{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ξ ξ	1.92 TeV 1.97 TeV 1.37 TeV	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
$ \begin{array}{c} \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + h \end{array} \right. $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \ 0 - 2 \\ 0 \\ 2 \ e, \mu \ (2) \\ 3 \ e, \mu \ (Z) \\ 1 - 2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 2 jets/1-2 b mono-jet 1 b 1 b 4 b		36.1 36.1 .7/13.3 0.3/36.1 3.2 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV c1 117-170 GeV c1 90-198 GeV c1 90-198 GeV c1 90-323 GeV c1 90-323 GeV c1 200-790 GeV c2 290-790 GeV c2 320-880 GeV		$\begin{split} & m(\tilde{k}_1^0) < 420 GeV \\ & m(\tilde{k}_1^0) < 200 GeV, m(\tilde{k}_1^+) = m(\tilde{k}_1^0) + 100 GeV \\ & m(\tilde{k}_1^0) = 2m(\tilde{k}_1^0), m(\tilde{k}_1^0) = 55 GeV \\ & m(\tilde{k}_1^0) = 1 GeV \\ & m(\tilde{k}_1^0) - 50 GeV \\ & m(\tilde{k}_1^0) = 50 GeV \\ & m(\tilde{k}_1^0) = 0 GeV \\ & m(\tilde{k}_1^0) = 0 GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
$\begin{array}{c} \underbrace{\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}}_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu})} \\ \underbrace{\tilde{\ell}_{1}\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-} \delta_{\nu}(\ell\bar{\nu})}_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\tilde{\chi}_{2}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\bar{\nu}),\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu)}_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-} \rightarrow \tilde{\ell}_{L}\nu \tilde{\ell}_{L}(\bar{\nu}\nu),\ell\bar{\nu}\tilde{\ell}_{L}(\ell\bar{\nu}\nu)} \\ \underbrace{\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}}_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}}_{\tilde{\chi}_{1}^{-}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}} \\ \underbrace{\tilde{G}GM (wino NLSP) weak prod.}_{GGM (bino NLSP) weak prod.} \end{array}$	$\begin{array}{c} 3 \ e,\mu \\ 2 \ 3 \ e,\mu \\ e,\mu \\ \gamma\gamma \\ e,\mu,\gamma \\ 4 \ e,\mu \\ \tilde{\chi}^0_1 \rightarrow \gamma \tilde{G} \ 1 \ e,\mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3			$\begin{split} & m(\tilde{k}_{1}^{0}) {=} 0 \\ & m(\tilde{k}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{k}_{1}^{+}) {+} m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{k}_{1}^{+}) {+} m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{2}^{0}), m(\tilde{k}_{2}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0, m(\tilde{k}, \tilde{\nu}) {+} m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}) {=} m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{k}_{1}^{0}) {=} m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{k}_{2}^{0}) {+} m(\tilde{k}_{1}^{0})) \\ & cr < 1 nm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Direct $\tilde{x}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived \tilde{x} Direct $\tilde{x}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived \tilde{x} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB stable $\tilde{\tau}, \tilde{x}_{1}^{0} \rightarrow \tilde{c}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB stable $\tilde{\tau}, \tilde{x}_{1}^{0} \rightarrow ev/e\mu / \mu\mu \nu$ GM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow ev/e\mu / \mu\mu \nu$	[±] 0 trk dE/dx trk 0 1-2 μ displ. ee/eµ/μμ	-	-	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3	X [±] 430 GeV X [±] 495 GeV Ž 850 GeV Ž 1.0 Te X [±] 700 Cov	1.58 TeV 1.57 TeV achiev	$\begin{array}{c} \mathfrak{m}(\tilde{\chi}_{1}^{+})-\mathfrak{m}(\tilde{\chi}_{1}^{0})\sim160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{+})=0.2 \text{ ns}\\ \mathfrak{m}(\tilde{\chi}_{1}^{+})-\mathfrak{m}(\tilde{\chi}_{1}^{0})\sim160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{+})\sim15 \text{ ns}\\ \mathfrak{m}(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \ \mu s<\tau(\tilde{g})<1000 \text{ s}\\ \mathfrak{m}(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}\\ \mathfrak{l}_{0}10 \text{ ns}\\ \mathfrak{l}_{0}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 eV gibthoss, 1504.05162 1504.05162
$\begin{array}{c} \operatorname{GGM}_{\tilde{z}\tilde{z}_{*}} \underbrace{\boldsymbol{\widehat{G}}}_{\boldsymbol{2}} \underbrace{\boldsymbol{\widehat{G}}} \underbrace{\boldsymbol{\widehat{G}}} \underbrace{\boldsymbol{\widehat{G}}} \boldsymbol{$	$\begin{array}{ccc} 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ \tau & 3 \ e, \mu + \tau \\ 0 & 4 \ \text{-} \\ 0 & 4 \ \text{-} \\ 0 & 4 \ \text{-} \\ 1 \ e, \mu & 8 \ \text{-} \\ 1 \ e, \mu & 8 \ \text{-} \\ \end{array}$	0-3 b 	Yes Yes Yes ts - ts - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$\tilde{\chi}_1^{\pm}$ 450 GeV	1.45 TeV 4 TeV TeV 1.55 TeV	$\begin{split} & \mathcal{A}_{311}=&0,11,\mathcal{A}_{132/133/233}=&0.07\\ & \mathbf{m}(\tilde{q})=&\mathbf{m}(\tilde{g}), c_{12SF}<1 \text{ mm} \\ & \mathbf{m}(\tilde{\chi}_1^0) & \geq 0.02\times m(\tilde{\chi}_1^1), \lambda_{133} & \neq 0 \\ & \mathbf{m}(\tilde{\chi}_1^0) & \geq 0.2\times m(\tilde{\chi}_1^1), \lambda_{133} & \neq 0 \\ & \mathbf{BR}(b) & = \mathbf{BR}(c) & = 0\% \\ & \mathbf{m}(\tilde{\chi}_1^0) & = 0.03\times e^0 \\ & \mathbf{M}(\tilde{\chi}_1^0) & = 0.03\times e^0 \\ & \mathbf{M}(\tilde{\chi}_1^0) & = 1 \text{ TeV}, \lambda_{122} & \neq 0 \\ & \mathbf{BR}(\tilde{r}_1 & \rightarrow be/\mu) & \geq 00\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-036
Other Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		m(𝔅10)<200 GeV	1501.01325
*Only a selection of the available phenomena is shown. Many of simplified models, c.f. refs. for a	the limits are base	ed on	s or	1(ŋ−1	1	Mass scale [TeV]	22

ATLAS Preliminary

Strong Production (summary)



- Exclusion for m(~g) < 1.6-2 TeV for massless LSP</p>
- exclusion up to m(LSP) ~1.2 TeV

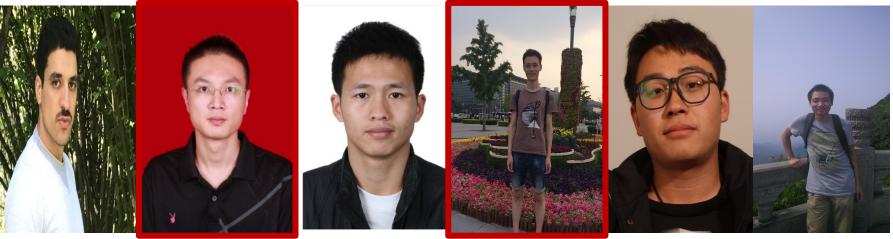
3rd Generation (summary)

EWK Production (summary)

Exciting times are ahead of us

THANKS FOR YOUR ATTENTION!

IHEP SUSY Group



Xuai ZHUANG

Shan JIN

Da XU

Feng LU

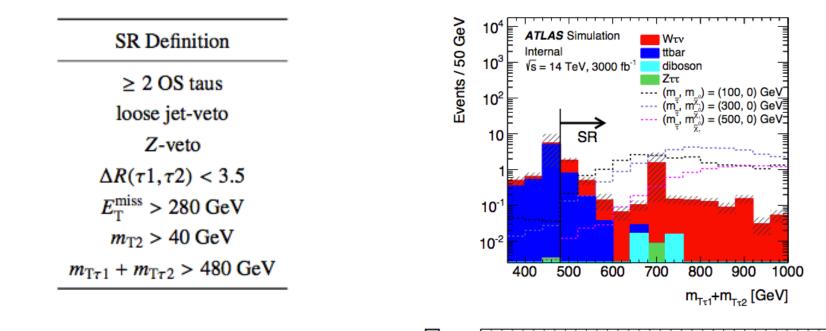
Mohamad Huan REN Huajie Cheng Peng Zhang Yang Liu Kassem AYOUB

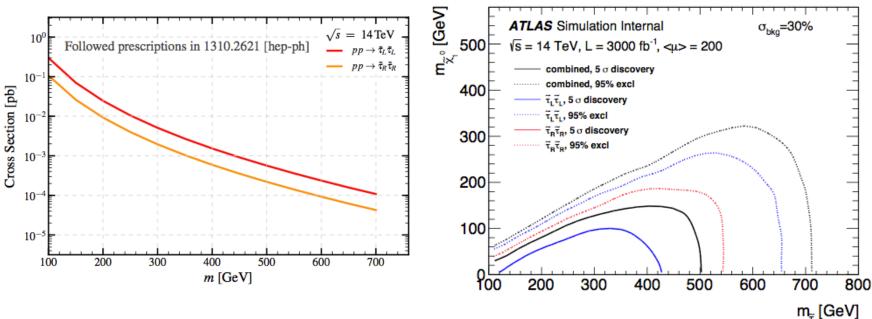
Chenzheng Zhu²⁷

Summary from IHEP SUSY Group

- 高能所SUSY实验小组:
 - □ 国内首个在LHC实验中进行R宇称守恒SUSY研究的实验小组(3名职工,1名博士后,5名研究生),已具有很强的国际竞争力。
 - □ 团队成员在国际合作组担任重要角色,已具有一定的国际知名度:
 - ATLAS SUSY EW 物理组召集人
 - ATLAS合作组委员会顾问组成员
 - ATLAS SUSY信号联络人
 - ATLAS HepData 联系人
 - ATLAS HistFitter 专家联络人
 - 多个课题的contacts: EWK-2tau, 1L, direct stau upgrade
 - 多个课题的Ed Board: Stop 1L; Stop to stau,
- 开展了3个热点课题,担任2个课题的联系人,3个分析的编辑,本年度已 发表3篇文章,2篇CONF NOTEs,7个国际会议报告
 - → 基于2015+2016年获取的36 fb⁻¹ 13 TeV的数据,整个ATLAS SUSY 组发表了14篇paper,本团队在3篇中做出主导或主要贡献

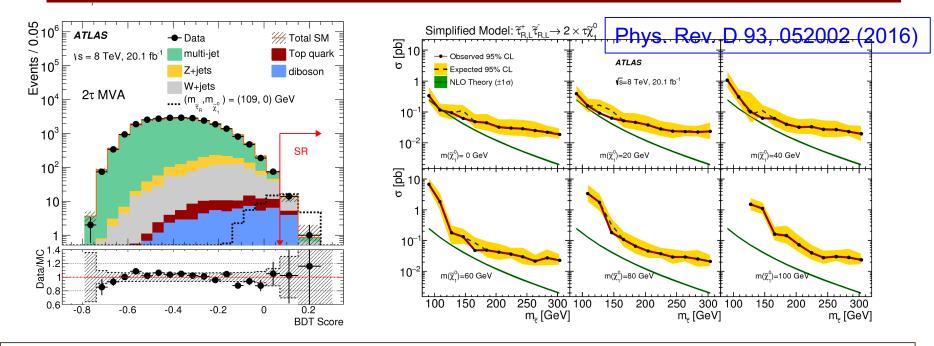
Plans and Future Work


Physics


- Before end of 2018: aim for the challenge signatures with compressed scenario, small cross section, RPV scenarios …
 - Direct stau Run2 study: summer paper 2017
 - C1N2→Wh(tautau): spring paper 2018
 - VBF scenarios with hadronic taus: spring paper 2018
 - RPV scenarios: summer paper of 2018
- Using whole run2 data, working on Benchmark scenarios for above 4 topics
- Upgrade TDR: direct stau upgrade study

Performance and OP:

- Tau substructure measurement
- MET performance study
- Pixel performance study


Direct stau upgrade study

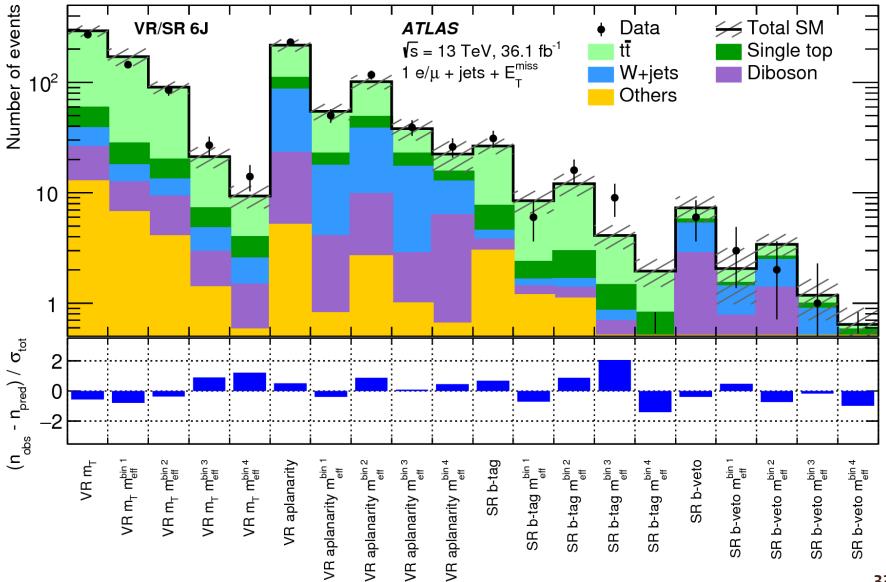
30

Direct stau MVA study

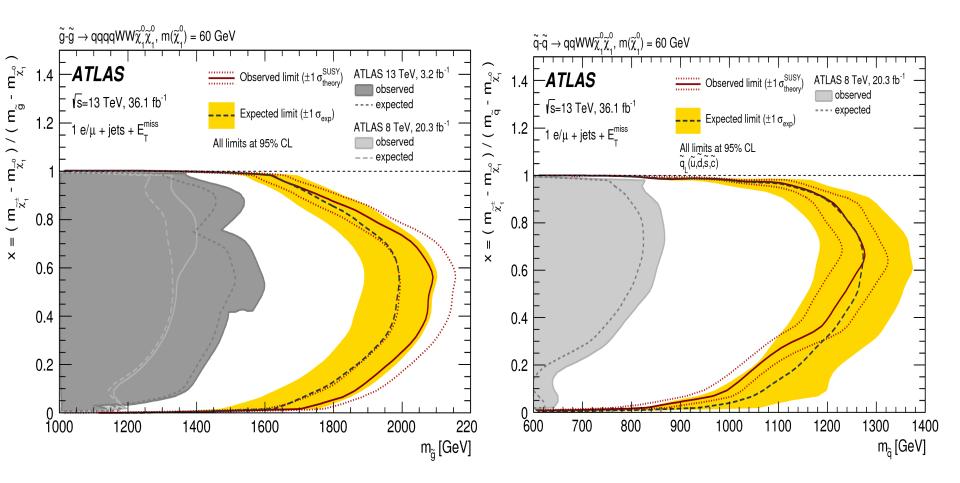
- 12 input variables used in MVA with good signal/bg separation: MET, Meff, mT2, m($\tau\tau$), mT(τ 1), mT(τ 2), τ 1_pt, τ 2_pt, $\Delta\phi(\tau\tau)$, Δ R($\tau\tau$), $\Delta\phi(\tau$ 1,MET), $\Delta\phi(\tau$ 2,MET).
- There is around 20-100% improvement on sensitivity at low stau mass region.
- The results have been published at Phys.Rev.D 93, 052002 (2016).
- Direct stau upgrade study is at next slide.

Run1

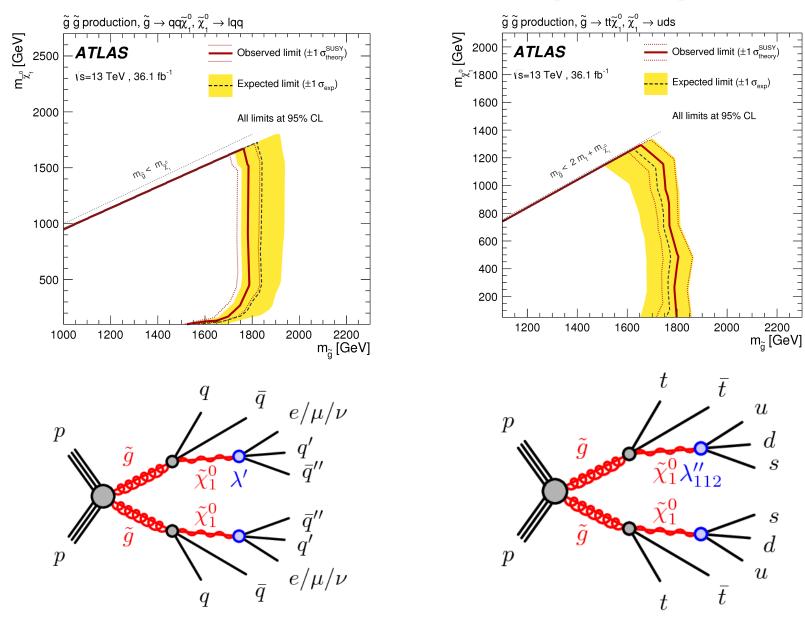
1L SUSY search (RUN2)


Table 2: Overview of the selection criteria for the signal regions used for gluino/squark one-step models.

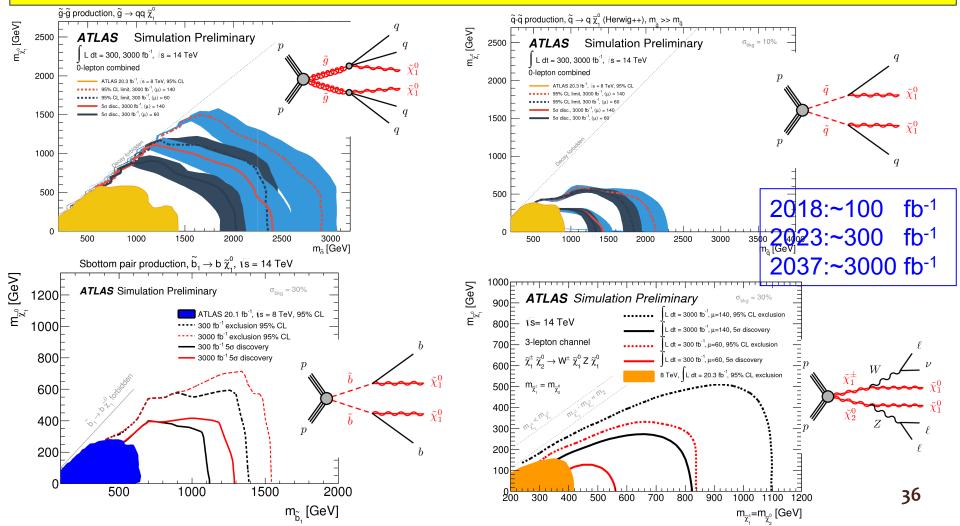
SR	2J	4J high-x	4J low-x	6J
N _ℓ	= 1	= 1	= 1	= 1
p_{T}^{ℓ} [GeV]	> 7(6) for $e(\mu)$ and < min(5 · N _{jet} , 35)	> 35	> 35	> 35
N _{jet}	≥ 2	4–5	4–5	≥ 6
$E_{\rm T}^{\rm miss}$ [GeV]	> 430	> 300	> 250	> 350
$m_{\rm T}$ [GeV]	> 100	> 450	150-450	> 175
Aplanarity	-	> 0.01	> 0.05	> 0.06
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.25	-	-
N_{b-jet} (excl)		= 0 for <i>b</i> -veto	$a \geq 1$ for <i>b</i> -tag	
$m_{\rm eff}$ [GeV] (excl)	3 bins ∈ [700,1900]	$2 \text{ bins} \in [1000, 2000]$	2 bins ∈ [1300,2000]	3 bins ∈ $[700,2300]$
m _{eff} [Uev] (exci)	+ [> 1900]	+ [> 2000]	+ [> 2000]	+ [> 2300]
$m_{\rm eff}$ [GeV] (disc)	> 1100	> 1500	> 1650(1300) for gluino (squark)	> 2300(1233) for gluino (squark)


Table 3: Overview of the selection criteria for the signal region used for pMSSM and gluino two-step models.

SR	9J
N_{ℓ}	= 1
p_{T}^{ℓ} [GeV]	> 35
N _{jet}	≥ 9
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$m_{\rm T}$ [GeV]	> 175
Aplanarity	> 0.07
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$ [GeV ^{1/2}]	≥ 8
$m_{\rm eff}$ [GeV] (excl)	[1000, 1500], [>1500]
$m_{\rm eff}$ [GeV] (disc)	> 1500


1L SUSY search (RUN2)

1L SUSY search (RUN2)



SS/3L SUSY search (RUN2)

Long term prospects

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14 TeV
 Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos

