IHEP ATLAS ITk-Strip Phase2 Upgrade

Xin SHI
On behalf of the IHEP ATLAS ITk Group

IHEP, CAS
3 November 2017

Outline

ATLAS ITk Upgrade in China

Joint effort between IHEP and Tsinghua U; received funding support from MOST (+bid to NSFC) to produce ~1000 barrel strip modules: core contribution of 1.8 MCHF

Main Research Topics

- Design of the front-end readout ASIC (ABCStar)
- Assembly and tests of barrel modules
- Evaluation of CMOS strip sensors
- And more ...

LHC Point 1: The ATLAS Experiment

ATLAS ITk Upgrade

ATLAS Detector upgrade for the LHC high luminosity upgrade, all silicon tracking device

r [cm]

• ITk-Strip Barrel Layer 3-4: 4.8 cm Layer 1-2: 2.4cm

Radiation hardness (1MeV n_{eq}/cm²)

Barrel short strip: 1.1×10¹⁵

Barrel long strip: 0.6×10¹⁵

Endcap inner layer strip: 1.6×10¹⁵

ITk Silicon Strip Detector Concept

Stave/Petal + Mechanics Supported Silicon Modules

ITk Upgrade Project Timeline

The Team

8 Staff Members (7 IHEP + 1 THU)

Xinchou Lou

Joao da Costa

Hongbo Zhu

Weiguo Lu

Xin Shi

Zhijun Liang

Yiming Li

Xin Chen

Main Research Topics

 Design of the front-end readout ASIC (ABCStar)

Assembly and tests of barrel modules

Evaluation of CMOS strip sensors

Part 1: Front-end ASIC design

 L0 trigger rate increase, redesign the digital readout GF/IBM 130nm CMOS

ABC Star ASIC Design

- It uses the standard binary readout architecture
- Data path: amplifier, discriminator, input register block, pipeline, event buffer and a cluster algorithm to compress data for output
- It is being designed to support various trigger modes
- It will be built in GF130nm technology

Digital Readout Design and Verification

 Redesign all digital logic, Verification framework based on SystemVerilog: UVM verification concept used for chip readout for the first time.

Submit final design by the end of 2017

IEEE RT2016 Poster (L. Cheng) TWEPP2016 Conf. Report (W. Lu)

Recent Progress on ASIC Design

Blocks/tasks Analog	status	Our contribution	Blocks/tasks Digital	status	Our contribution
FE	ongoing		InputRegisters	fixed	٧
Voltage regulator	ongoing	interested	Two stage buffers	fixed	٧
efuse	pending		Cluster Finder	fixed	
Analog monitor	pending	interested	Readout	fixed	
ESD	pending		TopLogic	fixed	٧
			LCB and CommandDecoder	ongoing	
			hitsAccumulator	fixed	٧
			Functional verification	ongoing	√
			SEU protection	pending	interested
			Digital backend	ongoing	interested

Part 2: Assembly and tests of barrel modules

Produce 50 working modules during pre-production

Tooling for module handling

Silicon Strip Detector Module

 Silicon Sensor + Hybrid PCB (with Readout ASICs and control chips) + Power board + Glue and Wire-bonds

Quality Control

 Based on the prototype study, along with the current ATLAS SCT detector experience, improve the quality control (QC) of module production process

Control board QC

Detector Module QC

Module QC Task: Evaluate max no. of modules in a bonder – by IHEP

- Design workholder for 2x2 module on BondJet820
- Released the first layout (thanks for Craig's help!)
- Processed at IHEP, will be evaluated at RAL

Drawing: Yuzhen Yang

Production: Fang Chen

IHEP Lab for ITk Upgrade

An existing class 1000 Cleanroom with 150m²

- OGP Flash CNC 300 already purchased
- Hesse BondJet820 is being purchased

IHEP Dedicated Cleanroom for ITk-Strip

A new cleanroom is proposed for the strip production.

Radiation-hard ASICs Import Issue

- Currently all of the radiation-hard ASICs in module (ABC, HCC, power control AMAC, DC-DC and FESAT are NOT allowed to be imported into China!
- **Milestone**: got export license for GF/IBM ASICs from US Department of Commerce and Export permission from Switzerland government.
- Actively in collaboration with RAL in UK to train our team in parallel

Collaboration with RAL

RAL in UK is the leading institution on ATLAS ITk upgrade.

IHEP Team visited RAL on September 19, 2016

- MoU to be signed with RAL
- Staff rotation plan to maintain 2 FTE's at RAL for the coming years.
- Invited RAL collaborators to China. Craig Sawyer will visit IHEP in August

Dummy Module Production at RAL

- Use glass-ASICs and plastic hybrid for dummy module production
- Use SmartScope to measure the height of glue

Sensor Electrical test at RAL

 ATLAS 07 Mini Sensor + ABC130, Learn basic silicon strip sensor test, measure I-V and Equivalent Input Noise

偏置电压	-10 V	-100 V	-300 V
Sensor + ASIC	597.9e	565.9e	563.5e
ASIC	450.5e	449.5e	448.4e

Part 3: CMOS Strip Sensor Study

 Based on CMOS technology, with low price, low material budget, good candidate for future silicon detector

Transient Current Technique (TCT)

G. Kramberger, *Advanced Transient Current Technique Systems*, PoS(Vertex2014)032

Check Sensor Response with TCT

Electrical Test Stand at IHEP

TCT at IHEP

CHESS1-HR CMOS Test

• Use TCT Scan to test CHESS1-HR Sensor Structure

CHESS2-HV Test

- Based on analog carrier board, revised CHESS1 testboard, will do TCT scan. Finished wire-bonding at RAL, waiting for temporary export permit.
- Setup DAQ to test the digital readout. Participate in the digital ASIC sensor (ABCN') design.

Other Activities

EUDAQ2.0 and EUTelescope development in collaboration with DESY

Involved in the ITSDAQ Development

- Glue height measurement with wirebonder
- Study on ATLAS 12A mini-Sensor

• To build half-ring pixel using dummy modules

Extremely High Radiation Effects on Silicon Detectors

- Study the effects of a beamloss scenario at the ATLAS
- Assess the tolerance of Strip (Pixel) modules under very high particle fluencies
- Measure the damage threshold using the beam provided by the High-Radiation to Material facility at SPS
- Two tests scheduled in 2017:
 June and October

C. Bertella

Contributions to IBL

- We did not sign on the IBL project, but have made direct contributions in several areas:
 - Function blocks design and more for FE-I4 (W. Wei with CPPM)
 - FE-I4 test stand setup and characterization (Y. Lu with LBL)
 - Design of the DRX-12 II chip (Y. Zhang)
 - FPGA firmware development (Histogramer) for Pixel DAQ (J. Hu)
 - Tracking and Vertexing performance studies (Y. Fang with LBL)

DRX-12 II layout

Blocks design, simulation and tape-out

Summary

China ATLAS ITk team are gaining momentum.

- Actively involved in the following main research topics:
 - Design of the front-end readout ASIC (ABCStar)
 - Assembly and tests of barrel modules
 - Evaluation of CMOS strip sensors
- And more exciting activities to come soon...