Detector Optimization & Reconstruction at the CEPC

Manqi Ruan

(Mangkruan@ihep.ac.cn)

On behavior of the CEPC Study Group

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings

Low Energy Booster (0.4Km)

- Searching for exotic Higgs decay modes (New Physics)
- Z & W factory: 10B Z boson_{Medium Energy Booster(4.5Km)}
 - Precision test of the SM
- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
 - ...
- Heavy ion, e-p collision...

Complementary

e+ e- Linac (240m)

IP3

Physics requirement

- General Requirements
 - Stable, Systematic Control
 - Hermicity
 - Homogenous
- A Higgs factory:
 - See Higgs
 - Distinguish the Higgs Signal from the SM^{WW, ZZ, ZY, YY} backgrounds
 - Distinguish the Higgs generation/decay mode
- A Z/factory factory
 - Tag different flavors particle id (charged P id)

PFA Oriented concept: A preliminary design

Dedicated ToF
Or
ECAL Layer with TDC
Equipped Chips

 $delta(T) \sim 50 ps$

To balance the efficiency & Purity of time measurement...

Tracker, TPC: R = 1.8 m

ECAL: 84-90 mm W

HCAL: ~1000 mm Iron

Solenoid (3T) + Yoke

Reference concept for CEPC CDR

PFA Oriented Design (Reference: ALEPH, SiD & **ILD**). TPC + Si-W ECAL + GRPC HCAL Geometry optimized at Physics benchmarks Smaller B Field ($3.5 \rightarrow 3T$), Thinner HCAL ($48 \rightarrow 40$ Layers), ECAL based ToF (50 ps), MDI/Yoke System, etc.

Result based on CEPC-v1(~ ILD), CEPC-v4 (~Optimized), Dedicated geometry sample 2/11/2017

Benchmark measurements

Parameters

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->μμ) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->γγ) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

Lepton

BDT method using 4 classes of 24 input discrimination variables.

Test performance at: Electron = E_likeness > 0.5; Muon = Mu_likeness > 0.5 Single charged reconstructed particle, for E > 2 GeV:

lepton efficiency > 99.5% && Pion mis id rate ~ 1%

Kaon

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Photon

Relative Accuracy: ~ 8.5%

0.14

0.12

Inhomogeneity degrades the resolution significantly.

Physics requirement: constant term < 1%

Detector geometry defects degrades the mass resolution to 2.2% (after correction);

Photon E resolution

Tau

- Two catalogues:
 - Leptonic environments: i.e, IITT(ZZ/ZH), vVTT(ZZ/ZH/WW), Z→TT;
 - Jet environments: i.e, ZZ/ZH→qqtt, WW→qqvt;

g(Hтт) measurement: preliminary

- ZH→µµтт
- Extremely Efficient Event Selection
- Signal efficiency of 93% entire SM background reduced by 5 orders of magnitude

- ZH→qqтт
- Cone based tau finding algorithm,
 Compromise the efficiency & purity
- Signal efficiency of 51%

Jets

- Boson Mass Resolution: Separate W, Z and Higgs in hadronic decay mode
 - Essential for Higgs measurement
 - Separate Higgs from Z/W (relatively easy)
 - Separate H→ZZ/WW events (challenging)
 - Appreciated in Triplet Gauge Boson Coupling measurements
 - Separate WW (Signal) from ZZ, ISR return Z, etc.
 - ...
- Jet Clustering & Single jet response
 - To understand the Degrading induced by Jet Clustering, Matching, etc
 - Search for the most suited jet clustering algorithm (Presumably channel dependent) – Understand the Corresponding Systematic

- ...

Separation

PDF Normalized to unit Area.

Left: Inclusive Samples

Right: Light flavor Sample with Visible ISR Photon Veto

Impact of Jet Clustering: Significant

Jet energy Scale

Amplitude ~ 1%
Large JES observed at Leading Jet (Correlated), and at overlap region (Increasing of Splitting)

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

PFA Oriented Reconstruction

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 - 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 – 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	$P(\text{Neutron} \rightarrow \gamma) = 1-5\%$
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$P(\pi^{\pm} \to K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	$P(uds \rightarrow b) = 1\%$ $P(c \rightarrow b) = 10\%$
c-jets	60%	60% at Z pole runs	$P(uds \rightarrow c) = 5\%$ $P(b \rightarrow c) = 15\%$

Photon*: only considering neutron
background and using ToF information
Kaon**: Performance Highly depend on DAQ & Geometry

Br(H→WW) @ 10mm/20mm Cell size

Br(H→WW) via vvH, H→WW*→lvqq

No lose in the object level efficiency: JER degraded, ~ 5/10% at 10/20 mm

Over all: event reco. efficiency varies ~1%

Conclusion

- The PFA oriented detector & reconstruction: well established at the CEPC
- Reference detector + Arbor
 - High efficiency & purity for Lepton, Kaon, Photon reconstruction
 - Well established Higgs Signal in Physics benchmarks
 - The Jet energy resolution
 - 2-jets events: efficiently separate W, Z & Higgs: appreciated in TGC & Higgs properties measurements
 - Jet level: |JES| < 1%, JER ~ 3-6%
 - Jet Clustering has significant impact and need to be handled with care
 - To do: detailed study on the 4 jets events (ZH, ZZ, WW)
- Requirement to the Calorimeter
 - High Granularity + Low Power Consumption + High Homogeneity

Backup

Boson Mass Spectrum

- 2-jets Samples (the majority of events with jets at Higgs operation)
 - Higgs: vvH
 - Z: vvqq and ISR return events
 - W: Ivqq events
- Physics effects
 - Intrinsic Width (Z: 2.5 GeV, W: 2 GeV)
 - Neutrinos, especially those induced by heavy flavors
 - ISR photons
 - Interferences*
- Detector effects
 - Acceptance
 - Geometry defects
 - Polar angle dependence

Figure 4: The diagrams for the four fermions processes

Jets

- Test on vvqq sample with ee-AntiKt algorithms
- Same Jet Clustering Set up applied for MCParticles & Reconstructed Particles
- Matching algorithm based on Min. Angle is applied

Over all Performance

- Efficiency & Purity at Z pole
 - Statistically: Pion is roughly 8 times w.r.t Kaon, which is 1.4 times more than Protons
 - integrated over 2 20 GeV momenta range and the fiducial polar angles

Condition		#σ(π-K/K-p)	Efficiency	Purity
MCTruth	dEdx only	3.9/1.5	88%	86%
	+ TOF	4.0/3.2	98%	98%
20% degraded	dEdx only	3.1/1.2	81%	79%
	+ TOF	3.3/3.0	96%	96%
50% degraded	dEdx only	2.4/0.9	68%	68%
	+ TOF	2.8/2.9	91%	94%

Hand waving objective:

To understand the source of degrading, and control it to be less than 20%.

Key performance: Separation

Figure 11. Event display of reconstructed di-photon.

Separation power/Crucial Distance:

- ~ 2*Cell with Cell Size <= Moliere Radius;
- ~ 1 Cell with Cell Size > 1 Moliere Radius.

Impact of Separation: Z->tau tau @ Z pole

5 -> 20 mm: May severe degrade Tau physics performance -> to be investigated

2/11/2017

Z->ff, Energy of Z (SumE of di-fermion)

Peak at 125GeV: gamma gamma(II) event

Z->ff, Energy of Z (SumE of di-fermion)

Parameters

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->μμ) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->γγ) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

Br(H→WW)

H→WW/ZZ: Portal to Higgs width & perfect test bed for detector/reconstruction performance...

Expected Number of events with different objects					
	Z→II	tautau	VV	qq	
H→WW*→4q	6.91k	3.45k	19.74k	69.1k	
μνqq	2.27k	1.14k	6.47k	22.7k	
evqq	2.27k	1.14k	6.47k	22.7k	
eevv	186	93	527	1.9k	
μμνν	186	93	527	1.9k	
еµvv	372	186	1154	3.7k	
X + tau	3.2k	1.6k	9.14k	32.0k	

- Br(H→WW), Combined accuracy ~ 1.0% from 13 independent full simulation analyses
 - 1.45% at IIH, H→WW*→ inc channels, 12 independent channels.
 - ~ 1.7% at vvH, H→WW*→ 4q channel (Preliminary. ILC extrapolation = 2.3%)
 - 2.3% at qqH, H→WW*→ 2qlv channel (extrapolated from ILC full simulation)
 - Combined: 1.0%

Validation: Arbor Branch Length

Arbor: successfully tag sub-shower structure

Samples: Particle gun event at ILD HCAL (readout granularity 1cm² & layer thickness 2.65cm)

Length:

Charged MCParticle: spatial distance between generation/end points

Arbor branch: sum of distance between neighbor hits

PFA Reconstruction

Requirements at the CEPC: Reconstruct all the physics objects (Lepton, Photon, Kaon, Tau, Jet, MET) efficiently & precisely.

38

- g(Hтт) measurement: preliminary
- Jets
- Boson Mass Spectrum
- Separation
- Jets
- Impact of Jet Clustering: Significant
- Jet energy Scale
- Jet Energy Resolution