Progress on the study of CEPC Detector Magnet

Zhu Zian

Institute of High Energy Physics 2017.11.3

outline

- Writing of magnet CDR
- R&D progress
- Future plan

CDR of the magnet

• From Pre CDR to CDR

- 2.7 The detector magnet system
 2.7.1 General design considerations
 - 🗜 2.7.2 Solenoid design
 - 2.7.3 Coil manufacturing and assembly
 - 2.7.4 Ancillaries
 - 2.7.5 Magnet tests and field mapping
 - 🕂 2.7.6 Iron yoke design

a Detector magnet system
- 8.1 General Design Considerations
🗉 🖫 8.2 The Magnetic Field Requirements and Design
- 8.2.1 Main parameters
- 8.2.2 Magnetic field design
- 8.2.3 Coil mechanical analysis
- 8.2.4 Preliminary quench analysis
🖻 🖫 8.3 HTS/LTS Superconductor Options
🐨 8.3.1 HTS plan background
🕂 8.3.2 The latest development of high temperature superconducting cable
📲 8.3.3 HTS magnetic design
- 8.3.4 Future work of HTS plan
🖻 🖫 8.4 Solenoid Coil Design
- 8.4.1 Solenoid Coil Structure
8.4.2 R&D of Superconducting Conductor
- 8.4.3 Coil fabrication and assembly
🖻 🖵 8.5 Magnet Cryogenics Design
8.5.1 Preliminary Simulation of the Thermosyphon Circuit
- 8.5.2 Preliminary results for 10:1 scale model
8.5.3 Experiment of a small-sized He thermosiphon
8.5.4 Cryogenic Plant Design
8.6 Quench Protection and Power supply
8.6.1 power supply
8.6.2 control and safety systems
8.7 Iron Yoke Design
8.7.1 The Barrel Yoke
■ 8.7.2 The Endcap Yoke
8.7.3 Yoke assembly
🐨 8.8 Dual Solenoid Scenario

Main changes between Pre CDR and CDR

- The central magnetic field: 3.5T → 3T
- Add two sections
 - HTS plan options
 - Active shielding Scenario
- All sections add more detail

The Magnetic Field Requirements and Design

main parameters of the solenoid coil

The central magnetic field: From 3.5T to 3T

The solenoid central field (T)	3	Working current (kA)	15.8
Maximum field on conductor (T)	3.5	Total ampere-turns of the solenoid (MAt)	20.3
Coil inner radius (m)	3.6	Inductance (H)	10.5
Coil outer radius (m)	3.9	Stored energy (GJ)	1.3
Coil length (m)	7.6	Cable length (km)	30.4

Field map of the magnet (T)

The Magnetic Field Requirements and Design

The non-uniformity of Tracking Volume (diameter 3.62m, length 4.7m) is 9.1%.

$$B_p = \frac{B_{max} - B_{min}}{B_{center}} = 9.11\%$$

magnetic field distribution of the Tracking Volume

Stray field					
50 Gs	R direction	13.6 m			
	Z direction	15.8 m			
100 Gs	R direction	10 m			
	Z direction	11.6 m			

Stray field distribution outside the magnet (the field is given in T)

.005	.005556	.006111	.006667	.007222	.007778	.008333	.008889	.009444	.01

HTS option

- Compared with the use of LTS(low temperature superconductor), the HTS(high temperature superconductor) detector magnet has the following highlights:
 - 1. Three HTS supplier existed in China
 - 2. It is possible HTS cost 10 times cheaper in 5 years
 - 3. Working at a relatively high temperature (20 K), cooling get easier
 - 4. More stability, HTS magnet not easy to quench
 - 5. Cost maybe comparable with the LTS magnet especially in the case of active shielding design(without iron yoke)
 - 6. Push the development of full HTS high field solenoid magnet

Ning Feipeng

HTS option

Which HTS conductor is suitable for CEPC detector magnet?

Parameters of CEPC detector magnet if based on stack cable

Central magnetic field	3 T	Working current	8 kA
Maximum vertical field on cable	2.7 T	Ampere-turns	20*10 ⁶
Inner diameter of coil	3.6 m	Inductance	38.4 H
Outer diameter of coil	3.7 m	Stored energy	1.2 GJ
Length of the coil	7.5 m	Operating temperature	20 K

Future work of HTS plan:

I) YBCO cable research. Select proper HTS cable or develop new cable for large detector magnetII) Study the quench detection, transmission and protection of the HTS coilIII) HTS coil prototype development

Active shielding Scenario

- The active shielding design has been applied widely for commercial MRI magnets. Comparing to the one solenoid and yoke design, this design achieves a similar performance while being much lighter and more compact, which has been improved by FCC previous studies.
- The main solenoid provides 5 T central field over an room temperature bore of 7.2 m and a length of 7.6 m. The outer solenoid provides -2 T central field, with a radius of 6.5 m and a length of 10 m.

Muon	Shield Solenoid : R 6.5m, L 10m Muon Chamber	Muon
Chamber	Main Solenoid: R 3.6m, L 7.6m	Chamber

Sketch figure of the active shielding magnet, with the available areas for muon chambers

Field map of the active shielding magnet

R&D progress

• Development progress of Al-based SC conductors

Al-based Superconducting conductor was mainly used for large detector magnets, such as ATLAS and CMS, ..., FCC detector. We had the experience of using in BEPCII-BESIII detector.

Cross sections of AI stabilized and reinforced conductors previously used and will be used

Extrusion of Aluminum with insert of Rutherford cable

Conform technics

Process Drawing

Aluminum cladding process study and improvement Zhu Zian, Yuan Ye, Hou Zhilong ,Mu Zhihui

<image>

Continuous extrusion and continuous cladding technology

Engineering Research Center of the Ministry of education for continuous extrusion

Dalian Conform Ltd. (Dalian Jiaotong University)

R&D progress

- Different aluminum alloy and copper cable shear strength test
 - ✓ The shear strength is larger than the required (20MPa) in the latest test. We used 99.99% aluminum material to improve the shear strength.

Number of strands : 32 Strand diameter : 1.2mm Materiel :COPPER+Al Length: 1m Complete time: 2016.8 Shear strength (copper &Al) : 8.85 MPa

Dimensions: 15*4.7mm² Number of strands : 14 Materiel : COPPER+Al(99% purity) Complete time: 2017.4 Shear strength (COPPER &Al) : 10 MPa

Dimensions: 15*4.7mm² Number of strands : 14 Materiel : COPPER+Al(99.99% purity) Complete time: 2017.8 Shear strength (COPPER &Al) : >35MPa

Baotang Zhang, Meifen Wang

Magnet Cryogenics

• A mini set-up for thermal siphon study based on liquid helium LTS

- Building a two-phase natural circuit loop, helium was used as the working fluid;
- Investigate the heat and mass transfer characteristics experimentally;
- Obtain temperature profile with heat flux and critical heat flux
- Numerical modelling of mass flow rate in a thermal syphon

Experimental apparatus

Summary

- Several designs have been completed on the requirements of different central field and different thickness of yokes, compared the key parameters such as homogeneity/stray field/cost etc.
- Some progress in the development of specific LTS superconductor, thermal siphon cooling
- HTS option was initially proposed
- We keep iron yoke structure as the default option in the CDR, and the Active Shielding scenario as an candidate option

Next Steps

- 1. Further development of long Al-based NbTi conductor (>100m, RRR/Ic measurement)
- 2. Study of thermal siphon cooling system
- 3. Study of HTS option

Thank you for your attention!

Zhu Zian Email: zhuza@ihep.ac.cn