CEPC 理论研究报告

李钊

吕才典,贾宇,刘朝峰,顾嘉荫,毛英男,王科臣,王彦,殷文

理论室&CFHEP 2017-11-03

Search for new physics in hadronic B decays

K. Huitu, C.D. Lü, P. Singer D.X. Zhang, Phys. Rev. Lett. 81, 4313 (1998), hep-ph/9809566.

b → ssd transition (a) SM, (b) MSSM, (c) MSSM with R-parity violating coupling.

SM BRs: $\sim 10^{-14}$, Some New physics can reach 10^{-6} ;

Recent Study in Randall Sundrum model,

Br(b-)ss d-bar) can reach to 10⁻¹⁰, Chin. Phys. C41 (2017) 053106

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \to K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 \ B\overline{B}$ pairs collected with the BABAR detector.

Similar channel $B^- \rightarrow \pi^- \pi^- K^+$

Recent LHCb result (Physics Letters B 765 (2017) 307–316):

$$\mathcal{B}(B^+ \to K^+ K^+ \pi^-) < 1.1 \times 10^{-8}$$

 $\mathcal{B}(B^+ \to \pi^+ \pi^+ K^-) < 4.6 \times 10^{-8}$.

CEPC as a flavor factory

- Looking for new physics through precision measurements
- LQCD can calculate form factors and meson decay constants appearing in weak decays of hadrons
- Combined with experiments, they give us CKM matrix elements
- $O(10^9)$ $D^0/D^{\pm}/\mathrm{Ds}/D^{*\pm}$ events
- # of Λ_c : ~3 × 10⁹ (PDG2016: $Z^0 \to \Lambda_c X$, 1.54(33)%)

b-hadron species	Fraction	Number
	in decays of	of b-hadron
	$Z^0 o b \bar b$	at Z^0 peak
B^0	0.404 ± 0.009	0.6×10^{10}
B^+	0.404 ± 0.009	0.6×10^{10}
B_s	0.103 ± 0.009	0.02×10^{10}
b baryons	0.089 ± 0.015	0.02×10^{10}

f_{D^*} and $f_{D_s^*}$

Definition (vector meson decay constant):

$$\langle 0|\bar{q}(0)\gamma^{\mu}q'(0)|V(p,\lambda)\rangle = f_V m_V e_{\lambda}^{\mu}$$

• Widths of leptonic decay, e.g. D_s^* (no exp. measurements yet), extract $|V_{cs}|$

$$\Gamma_{(D_s^* \to \ell \nu)} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 M_{D_s^*}^3 \left(1 - \frac{m_\ell^2}{M_{D_s^*}^2}\right)^2 \left(1 + \frac{m_\ell^2}{2M_{D_s^*}^2}\right)$$

• Inputs for studies of nonleptonic B meson decays using factorization (e.g., f_{D^*} for $B \to D^{(*)}M$)

f_{D^*} and $f_{D_s^*}$

W.-F. Chiu, ... Zhaofeng Liu, ... et al., in preparation

Overlap fermions on domain wall fermion configurations

1/a(GeV)	label	am_{sea}	volume
1.730(4)	48I	0.00078/0.0362	$48^{3} \times 96$

- Almost physical light quark mass: $m_\pi = 139.2(4)$ MeV
- 2+1-flavors (RBC/UKQCD Collaborations)
- Preliminary results (statistical error only)

	D	D *	D_s	D_s^*
f_M /MeV	213(1)	235(3)	248(2)	275(5)

$$f_{D^*}/f_D = 1.10(3)$$
 $f_{D_s^*}/f_{D_s} = 1.11(2)$

f_{D^*} and $f_{D_s^*}$

W.-F. Chiu, ... Zhaofeng Liu, ... et al., in preparation

- HPQCD, PRL112, 212002 (2014)
- 2 lattice spacings, 2+1-flavors
- ETMC, PRD96, 034524 (2017)
- 3 a's, 2+1+1-flavors
- Becirevic et al., JHEP02 (2012) 042 4 α's, 2-flavors
- Sea quark effects? Difference between 2-flavor and 2+1-flavor, 2+1+1-flavor results.

Renormalization of bilinear quark operators

Y. Bi, ..., Zhaofeng Liu, arXiv:1710.08678

Matching hadronic matrix elements calculated on the lattice to the continuum

$$\overline{\psi}\Gamma\psi$$
, $\Gamma = I, \gamma_5, \gamma_\mu, \gamma_\mu\gamma_5, \sigma_{\mu\nu}$

- For example, Z_T for f_V^T (coupling of a vector meson to the tensor current/tensor decay constant), Z_V for f_{D^*}
- Configurations (from RBC-UKQCD Collab.) with almost physical pion mass: $M_{\pi}^{(\text{sea})} = 139.2(4)$ MeV

1/a(GeV)		am_l^{sea}/am_s^{sea}	volume	
1.730(4)	48I	0.00078/0.0362	$48^{3} \times 96$	81

Renormalization of bilinear quark operators Y. Bi, ..., Zhaofeng Liu, arXiv:1710.08678

1.20
RI/MOM
MS $a^2p^2 \in [5.0:8.0]$ 1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.1

- (Above) Z_T in the RI/MOM, RI/SMOM and \overline{MS} schemes
- (Below) Final results for all renormalization constants

Matching factors to the $\overline{\rm MS}$ scheme for the quark field and bilinear quark operators

Z_A	$Z_q(2 \text{ GeV})$	$Z_T(2 \text{ GeV})$	$Z_S(2 \text{ GeV})$	$Z_P(2 \text{ GeV})$
1.1025(9)	1.2157(54)	1.1631(24)	1.118(18)	1.123(19)

Cosmology and Particle Physics from simple set-ups,

Wen Yin

ALP miracle

arXiv: 1702.03284 (JCAP05(2017)044)

arXiv: 1710.XXXX

set up:

Successful Axion Inflation + Up-Side Down Symmetry

we get:

=Longevity and Dark Matter(=axion) abundance.

Hinted by

- cooling of HB stars
- missing satellite

Predictions

- . $g_{\phi\gamma\gamma} \propto m_{\phi}^{-1/2}$. will appear in IAXO and TASTE.
- running of spectral index
- $\Delta N_{eff} \simeq 0.03$

Cosmology and Particle Physics from simple set-ups,

Wen Yin

Higgs-Anomaly Mediation

arXiv:1606.04953, Phys.Lett. B762 (2016) 72-79, JHEP 1609 (2016) 086

set up:

SUSY breaking only in Higgs sector + Anomaly Mediation

we get:

=Higgs boson mass, light sfermions and Yukawa Unification.

Hinted by

- Muon g-2 anomaly
- · GUT
- Baryon Asymmetry of Universe Production Selavor.
- Light sfermions in LHC and future colliders
- Typical mass patterns of gaugino

Cosmology and Particle Physics from simple set-ups,

Wen Yin

Simplest Neutrino-Portal WIMP model

arXiv:1706.07028

set up:

SM+WIMPs with O(10)MeV-O(10)GeV +Neutrino Portal Interaction

we get:

=Neutrino mass, Higgs Invisible Decay, Cutoff for Cosmic Ray Neutrino, DM

Hinted by

- No signal in Direct Detections(DD)
- No signal for >PeVs Neutrino event in ICECUBE

Predictions

If the DM is found in DD,
 Higgs anomalous decay is within reach of CEPC etc.

- · If CosmicRay neutrino obtains a cutoff, Higgs anomalous decay is within reach of CEPC etc.
- + Neutrino mass range is predicted

- J. Gu and Y. Y. Li, Optimizing Higgs factories by modifying the recoil mass, arXiv:1709.08645 [hep-ph].
- J. Gu, H. Li, Z. Liu, S. Su and W. Su, Learning from Higgs Physics at Future Higgs Factories, arXiv:1709.06103 [hep-ph].
- G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 1709, 014 (2017) doi:10.1007/JHEP09(2017)014 [arXiv:1704.02333 [hep-ph]].
- H. An, J. Gu and L. T. Wang, Exploring the nearly degenerate stop region with sbottom decays, JHEP 1704, 084 (2017) doi:10.1007/JHEP04(2017)084 [arXiv:1611.09868 [hep-ph]].

The "12-parameter" EFT fit of Higgs couplings

JHEP 1709, 014 (2017) [arXiv:1704.02333]

precision reach of the 12-parameter fit in Higgs basis

Triple Higgs coupling in the EFT framework

current work, S. Di Vita, G. Durieux, C. Grojean, JG, Z. Liu, G. Panico, M. Riembau, T. Vantalon, to appear soon

A. Testing CP-violation in the Scalar Sector at CEPC

G. Li, Y.-N. Mao, C. Zhang, and S.-H. Zhu, Phys. Rev. D 95, 035015 (2017).

• Assuming a new scalar h_2 discovered (h_1 is the X(125)), CP properties analysis:

Tree level vertices :
$$h_i VV$$
, $h_j VV$, $h_i h_j Z$

• Effective interaction:

$$\mathcal{L} = \left(c_1 h_1 + c_2 h_2\right) v \left(\frac{g^2}{2} W^{+\mu} W_{\mu}^{-} + \frac{g^2}{4c_W^2} Z^{\mu} Z_{\mu}\right) + \frac{g c_{12}}{2c_W} Z^{\mu} \left(h_1 \partial_{\mu} h_2 - h_2 \partial_{\mu} h_1\right)$$

- $K \equiv c_1 c_2 c_{12} \neq 0$ means CP-violation in scalar sector
- Choose $m_2 = 40 \text{ GeV}$ as an example

Test at CEPC: $e^+e^- \to Z^* \to Zh_1, Zh_2, h_1h_2$ associated productions

- Process simulation: $e^+e^- \to Z(\ell^+\ell^-)h_2(\text{anything}), h_1(b\bar{b})h_2(\text{anything})$
- "Recoil mass technique" and " p_T -balance cut" help

 (peak at h_2 mass) (tagging the most energetic photon)
- Results summary: sensitivities on c_2 (left table) and c_{12} (right table)

	95% U.L.	3σ Disc.	5σ Disc.		95% U.L.	3σ Disc.	5σ Disc.
before	< 0.087	> 0.118	> 0.152	before	< 0.092	> 0.125	> 0.161
after	< 0.061	> 0.083	> 0.107	after	< 0.088	> 0.119	> 0.153

B. Improved Formalism of SLH model and the $Zh\eta$ Vertex

S.-P He, Y.-N. Mao, C. Zhang, and S.-H. Zhu, arXiv: 1709.08929.

Measurement @ LHC

Different production rate Different decay BR

 $\kappa_{\rm g}$

New Physics in fermion loop???

Probe Higgs-gluon coupling via jet energy profile at e^+e^- colliders

Gexing Li,1,* Zhao Li,1,2,† Yandong Liu,3,‡ Yan Wang,1,§ and Xiaoran Zhao4,¶

$$gg(8.18\%), \ c\bar{c}(2.884\%) \ \text{and} \ b\bar{b}(58.09\%)$$

$$\mathcal{L}_{hgg} = \kappa_g c_{ ext{SM}}^g rac{lpha_s}{12\pi v} h G^a_{\mu
u} G^{a\mu
u},$$

$$\psi(r) = rac{1}{N_j} \sum_j \psi_j(r) = rac{1}{N_j} \sum_j rac{\sum_{r_i < r} p_{\mathrm{T},i}(r_i)}{\sum_{r_i < R} p_{\mathrm{T},i}(r_i)}, \qquad \stackrel{\bigcirc}{\Longrightarrow} \begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.6 \end{array}$$

$$\psi(0.3)^{p_T^i} = \frac{\mathrm{Br}(\bar{\mathbf{b}}\mathbf{b})(1-2\varepsilon_{\mathbf{b}}+\varepsilon_{\mathbf{b}}^2)\psi(0.3)_{\mathbf{b}}^{p_T^i} - \kappa_{\mathbf{g}}^2 \mathrm{Ir}(\mathbf{g}\mathbf{g})\psi(0.3)_{\mathbf{g}}^{p_T^i} + \mathrm{Br}(\bar{\mathbf{c}}\mathbf{c})(1-2\varepsilon_{\mathbf{c}}+\varepsilon_{\mathbf{c}}^2)\psi(0.3)_{\mathbf{c}}^{p_T^i}}{\mathrm{Br}(\bar{\mathbf{b}}\mathbf{b})(1-2\varepsilon_{\mathbf{b}}+\varepsilon_{\mathbf{b}}^2) + \mathrm{Br}(\bar{\mathbf{c}}\mathbf{c})(1-2\varepsilon_{\mathbf{c}}+\varepsilon_{\mathbf{c}}^2) + \kappa_{\mathbf{g}}^2 \mathrm{Ir}(\mathbf{g}\mathbf{g})}$$

$$\Lambda^N(r) = rac{\sum_j \psi_j(r)}{\sum_j \psi_j^{ ext{SM}}(r)}.$$

$$X^N(r) = rac{\sum_j \psi_{j-q}(r)}{\sum_j \psi_{j-q}^{ ext{SM}}(r)},$$

SG+BG Simulation @ CEPC 5 ab^-1

$$\psi_{j-q}(r) \equiv \psi_j(r) - \tilde{\psi}_q(r),$$

$$\psi_{j-q}^{\mathrm{SM}}(r) \equiv \psi_{j}^{\mathrm{SM}}(r) - \tilde{\psi}_{q}(r).$$

$$Y^{N}(r) = rac{\sum_{j} (1 - \psi_{j})}{\sum_{j} (1 - \psi_{j}^{\mathrm{SM}})}.$$

$$Z^N(r) = rac{\sum_j (\psi_j + b)}{\sum_j (\psi_j^{\mathrm{SM}} + b)},$$

	$Z ightarrow e^+ e^-$	$Z o \mu^+ \mu^-$	$Z ightarrow u ar{ u}$	Z o jj	Combined
$\delta \kappa_g^{\Lambda}$		0.057			
$rac{\delta \kappa_g^{\Lambda}}{\delta \kappa_g^{X}}$					
$\delta \kappa_q^Y$		0.066			
$\delta \kappa_g^Z$		0.046			

$$b = \frac{\sigma^{2}(r)N^{\rm SM} + N_{\rm BG}^{\rm SM}(\psi_{q} - \psi_{\rm BG})(\psi_{g} - \psi_{\rm BG})}{(N_{b}^{\rm SM} + N_{c}^{\rm SM})(\psi_{g} - \psi_{q}) + N_{\rm BG}^{\rm SM}(\psi_{g} - \psi_{\rm BG})} - \psi_{q}.$$

Deep learning for jet identification @ CEPC

Yefan Wang,^{1,*} Gexing Li,^{1,†} and Zhao Li^{1,2,‡}

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

Duhram jet is different from jet@LHC

Deep learning in color: towards automated quark/gluon jet discrimination

Patrick T. Komiske, Eric M. Metodiev (MIT, Cambridge, CTP), Matthew D. Schwartz (Harvard U., Phys. Dept. & Harvard U.)

Dec 5, 2016 - 23 pages

@LHC

Thank you!