MDI Status Report

Hongbo Zhu

7 September 2017

Machine Parameters (before)

	Pre-CDR	Higgs	W	Z
Number of IPs	2	2	2	2
Energy (GeV)	120	120	80	45.5
Circumference (km)	54	100	100	100
SR loss/turn (GeV)	3.1	1.67	0.33	0.034
Half crossing angle (mrad)	0	16.5	16.5	16.5
Piwinski angle	0	3.19	5.26	4.29
N_e /bunch (10 ¹¹)	3.79	0.968	0.365	0.455
Bunch number	50	644 (412)	5534	21300
Beam current (mA)	16.6	29.97 (19.2)	97.1	465.8
SR power /beam (MW)	51.7	50 (32)	32	16.1
Bending radius (km)	6.1	11	11	11
Momentum compaction (10^{-5})	3.4	1.14	1.14	4.49
$\beta_{IP} x/y (m)$	0.8/0.0012	0.171/0.002	0.2 /0.002	0.16/0.002
Emittance x/y (nm)	6.12/0.018	1.31/0.004	0.57/0.0017	1.48/0.0078
Transverse σ_{IP} (um)	69.97/0.15	15.0/0.089	10.7/0.059	15.4/0.125
$\xi_x/\xi_v/\text{IP}$	0.118/0.083	0.013/0.083	0.0064/0.062	0.008/0.054
RF Phase (degree)	153.0	128	126.8	165.3
$V_{RF}(\text{GV})$	6.87	2.1	0.41	0.14
f_{RF} (MHz) (harmonic)	650	650	650 (217800)	650 (217800)
<i>Nature</i> σ_{z} (mm)	2.14	2.72	3.37	3.97
Total σ_z (mm)	2.65	2.9	3.4	4.0
HOM power/cavity (kw)	3.6 (5cell)	0.64(2cell) (0.41)	0.72(2cell)	1.99(2cell)
Energy spread (%)	0.13	0.098	0.065	0.037
Energy acceptance (%)	2	1.5		
Energy acceptance by RF (%)	6	2.1	1.1	1.1
n_{γ}	0.23	0.26	0.14	0.12
Life time due to	47	52		
beamstrahlung_cal (minute)				
F (hour glass)	0.68	0.96	0.98	0.96
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	2.04	3.13 (2.0)	5.12	11.9

Machine Parameters (July)

D. Wang

	Higgs	w	Z-low <u>lum</u> .	Z-high <u>lum</u> .
Number of IPs	2	2	2	2
Energy (GeV)	120	80	45.5	45.5
Circumference (km)	100	100	100	100
SR loss/turn (GeV)	1.61	0.32	0.033	0.033
Half crossing angle (mrad)	16.5	16.5	16.5	16.5
<u>Piwinski</u> angle	2.28	3.6	6.33	6.33
N_e /bunch (10 ¹⁰)	9.68	3.6	2.3	2.3
Bunch number	420	5700	3510	27000
Beam current (mA)	19.5	98.6	38.8	298.5
SR power /beam (MW)	31.4	31.3	1.3	9.9
Bending radius (km)	11.4	11.4	11.4	11.4
Momentum compaction (10 ⁻⁵)	1.15	1.15	1.15	1.15
$\beta_{IP} x/y (m)$	0.36/0.002	0.36/0.002	0.36/0.002	0.36/0.002
Emittance x/y (nm)	1.18/0.0036	0.52/0.0017	0.17/0.0038	0.17/0.0038
Transverse σ_{IP} (um)	20.6/0.085	13.7/0.059	7.81/0.087	7.81/0.087
$\xi_x/\xi_y/\mathrm{IP}$	0.025/0.085	0.014/0.068	0.017/0.053	0.017/0.053
RF Phase (degree)	128	134.7	151	151
$V_{RF}(\text{GV})$	2.03	0.45	0.069	0.069
f_{RF} (MHz) (harmonic)	650	650	650	650 (217800)
<i>Nature</i> σ_{z} (mm)	2.75	2.98	2.92	2.92
Total σ_z (mm)	2.85	3.0	3.0	3.0
HOM power/cavity (kw)	0.42 (2cell)	0.38 (2cell)	0.096 (2cell)	0.74 (2cell)
Energy spread (%)	0.096	0.064	0.036	0.036
Energy acceptance (%)	1.1			
Energy acceptance by RF (%)	1.98	1.46	1.2	1.2
n_{γ}	0.19	0.11	0.12	0.12
Life time due to	63			
beamstrahlung_cal (minute)				
F (hour glass)	0.93	0.963	0.987	0.987
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.0	5.6	1.0	7.7

Latest Machine Parameters

D. Wang

Last Month

	Higgs	w	Z-low <u>lum</u> .	Z-high <u>lum</u> .
Number of IPs	2	2	2	2
Energy (GeV)	120	80	45.5	45.5
Circumference (km)	100	100	100	100
SR loss/turn (GeV)	1.68	0.33	0.035	0.035
Half crossing angle (mrad)	16.5	16.5	16.5	16.5
Piwinski angle	2.25	3.56	6.26	6.26
N _e /bunch (10 ¹⁰)	10.7	3.6	2.3	2.3
Bunch number	348	5240	3550	27000
Beam current (mA)	17.9	90.7	39.2	298.5
SR power /beam (MW)	30.1	30.1	1.4	10.4
Bending radius (km)	10.9	10.9	10.9	10.9
Momentum compaction (10-5)	1.14	1.14	1.14	1.14
$\beta_{IP} x/y (m)$	0.36/0.002	0.36/0.002	0.36/0.002	0.36/0.002
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0039	0.17/0.0039
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.088	7.91/0.088
$\xi_x/\xi_y/IP$	0.028/0.093	0.014/0.067	0.017/0.052	0.017/0.052
RF Phase (degree)	128	134.4	151	151
$V_{RF}(GV)$	2.14	0.465	0.072	0.072
f_{RF} (MHz) (harmonic)	650	650	650	650 (217800)
Nature σ_z (mm)	2.72	2.98	2.92	2.92
Total σ_z (mm)	2.84	3.0	3.0	3.0
HOM power/cavity (kw)	0.43 (2cell)	0.35 (2cell)	0.098 (2cell)	0.74 (2cell)
Energy spread (%)	0.098	0.066	0.037	0.037
Energy acceptance (%)	1.2			
Energy acceptance by RF (%)	2.06	1.48	1.2	1.2
ny	0.21	0.11	0.12	0.12
Life time due to	61			
beamstrahlung_cal (minute)				
F (hour glass)	0.93	0.96	0.986	0.986
$L_{max}/IP (10^{34} cm^{-2} s^{-1})$	2.0	5.07	1.0	7.6

Relevant Changes

- **Higgs parameters** (larger 8x to improve dynamic aperture)
 - Ne/bunch: 10.7 (9.68)× 10¹⁰ → higher background (e.g. stronger beamstrahlung effect)
 - Energy acceptance: 1.2% (1.5%) → higher/lower background? (beam loss particles)
 - Bunch number: 348 (412) \rightarrow lower background

Counterbalanced in background levels? To be evaluated

- SR power: 30.1 (32) MW (restricted by the radiation tolerance of permanent magnets) → lower power deposition
- Bunch spacing (according to the updated parameters)
 - Higgs (~0.2 μs), W (~60 ns), Z(~100ns/~12ns)

Updated Magnet Designs

Y. Zhu

 Parameters of the magnets based on the new L* = 2.2 m and lower detector solenoid of B=3 T (small updates as required for lattice design)

Magnet	Field Strength	Length (m)	Inner Radius (mm)
QD0	151 T/m	1.73	19
QF1	102 T/m	1.4636	26
Compensating solenoid	6.6 T	1.0	90
Screening solenoid	3 T	1.73	100

- Weaker QD0/QF1 field strengths would lead to less harder SR photons in the IR → easier collimation and less backgrounds
- Lower compensating solenoid makes it possible to construct the magnet with the cutting-edge superconducting magnet technology → motivation to increase L* (+ clearance between electron/positron beam pipes)

Why Lower Detector Solenoidal Field

- Requirement to compensate and screen the detector field (close to full cancelation) to avoid disturbance to the beam
 - Challenging to construct the compensating magnet:
 - High detector field & short magnet (limited space) → 13 T in preCDR (almost impossible with technologies to be developed in coming years);
 - lower filed (3T) & longer magnet (space gained from the larger L* ~2.2)
 → ~7 T (feasible)
- Might blow up the vertical emittance \rightarrow significant luminosity loss

Worst case at Z: increase of 2.2pmrad compared to 3.9pmrad (design parameter) \rightarrow acceptable

We are less aggressive than FCCee in terms of luminosity at Z \rightarrow less sensitive to emittance increase, less demanding to lower further the detector solenoid

Magnet Layout

Magnets along the z-axis, outer radius (including cryogenics and mechanical structure) yet to be estimated \rightarrow defining the detector coverage in the forward region (θ_{min})

Background Estimation

- Beamstrahlung \rightarrow pair production, hadronic backgrounds
- Synchrotron radiation → power/energy deposition in IR, photon flux forming detector backgrounds (beam halo)
- Beam loss particles → radiative Bhabha scattering (initial + off-orbit particles back to IR), beam-gas interactions

Mostly based on the framework (MDIToolkit) developed by Q. Xiu

Beamstrahlung

- Helixes formed by the electrons/positrons from the kinematic edge of pair production out of the beamstrahlung
- Knowledge transfer to newcomers, code-debugging/cross-check ...

Hit Density

 0.25 hits/(cm²·BX) at the 1st vertex detector layer (No safety factor); updating the results with the latest machine parameters TID

- 200 kRad/year at the 1st vertex detector layer (safety factor = 10)
- NIEL calculation requires re-coding (on-going)

Continue to debug the code and double-check the machine parameters; close to produce the first set of results this week

Synchrotron Radiation

• SR photon flux (beam core) estimated based on the latest lattice design

S. Bai

Beam Halo to be considered, but less critical for power deposition calculation

SR Power Deposition

• Power deposition of SR photons along the z-axis

SR induced backgrounds to be estimated with **Bdsim** based on Geant4 (easy handling of geometries and particle interactions with material) \rightarrow Managed to run through the code; waiting for the latest lattice (+ code debugging) to produce preliminary results \rightarrow X. Wang (detector) + S. Bai (accelerator) *Detector background: main contribution from Beam Halo*

Beam Loss Particles

- Radiative Bhabha scattering: particles from the initial interaction (physics process) + off-orbit electrons/positions returning to the IR and bombing machine components, e.g. QD0 → critical background
 - BBBREM (small angle radiative Bhabha scattering) → SAD (particle tracking along the ring) → Mokka/Marlin (hit reconstruction)
 - Waiting for the SAD results (relying on the lattice design) from S. Bai
 - Additional challenge: where to place collimators if needed?

• Beam-gas interaction: less critical but we have not yet worked it on.

S. Hou, K. Zhu, S. Lukic et al.

LumiCal

- Combing knowledge and expertise from LEP LumiCal (S. Hou) and LC Fcal (S. Lukic, et al.) designs;
- Bi-weekly meetings called by K. Zhu

See the dedicated talk by Ivanka

CDR Writing

• **Topics to be covered**: interaction region, magnets, radiation backgrounds, luminosity measurement, beam monitor, energy measurement (?), integration (?), beam pipe (?)

- Editors: S. Bai (accelerator) + H. Zhu (detector), with inputs of texts & plots from all people involved in MDI studies
 - Similar chapter in the ACC CDR but with consistent designs but focusing slightly different topics -- **to be available earlier** (review in November)
- Preliminary results and texts will hopefully be ready by the end of this month (very difficult) and shall be continuously updated and improved toward CDR.