Current result of WW fusion, $H \rightarrow bb$ Cross-section measurement

Hao Liang 7/28/2017

Outline

- Sample Generation
- Cut Chain
- How to extract the WW fusion cross section by fit on the recoil mass
- Kinematic fit
 - Jet energy & direction resolution for *b* jets
- The result

Sample Generation for both pdf and fake data

- Signal: WW fusion, H->bb
- Higgs sample:
 - ~WW fusion(signal) and ZH (background), H->anything events re100k
 - Sample for interference between ZH and WW fusion can't be generated
- SM sample:
 - 2fermions + 4fermions

Cut Chain

- Defintion:
 - $N_{PFO} > 20$
 - $105 < E < 155 \&\& P_t > 13$
 - Isolep veto
 - $100 < M < 135 \&\& 65 < M_{recoil} < 135$
 - $y_{12} > 0.15 \&\& y_{23} < 0.06 \&\& y_{34} < 0.01$
 - $-0.98 < \theta_{2jets} < -0.4$
 - bb likeness > 0.4 (bb likeness = bb/(bb + (1 b)(1 b)))

	WW fusion, H->bb	ZH, H->bb	qqbar	sw-sl	sznu-sl	ww-sl	zz-sl
Cut chain	52.8%	64.9%	25630	124	5745	3230	9764
Fit window with kinematic fit	51.2%(~10k @5ab^-1)	63.8%(~79k @5ab^-1)	22980	112	4018	2187	6503

Recoil mass

• We can extract the WW fusion events number by fitting the recoil mass or recoil angle

Kinematic fit(1)

- Constraints:
 - $M_{2jets,fit} = m_H = 125 \text{GeV}$
 - Use a rude approximation that:
 - $M_{each jet, fit} = M_{each jet, raw}$ for each jet

WW fusion

Kinematic fit(2)

- Minimize χ^2 to determine the fitted 4-momenta
 - $\chi^2 = \sum_{j=1}^2 (P_{j,fit} P_{j,raw})^T U_j^{-1} (P_{j,fit} P_{j,raw})$
 - U_j is the covariance matrix of 4-momentum of each jet. We can σ_{θ} , σ_{ϕ} and σ_E as input to calculate this matrix.
- Implement KF
 - *KinFit* produce almost same result as self-written code, if both code did the fit successfully. But *KinFit* is more robust
 - Currectly, the fit was done by my own code
 - Plan to use *KinFit* in the future (more robust)

Jet energy & direction resolution(1)

- Sample
 - ~100k, vvH, H->bb
 - independent to the sample used in main analysis
- Reconstructed jet energy distribution
 - The energy was dived into several bins based on right Figure
 - Number of events in each bin are of same order of magnitude.

Jet energy & direction resolution(2)

- Match quark and reconstructed jet
 - 1st approach: Minimize a χ^2
 - $\chi^2 = \sum_{j=1}^2 (p_{i,jet} p_{j,quark}^2)^2$
 - 2nd approach: Find the root of every particles in a jets using MC truth and link information (See Gang Li's FSClasser)
 - The results from these two approach seems same. But the latter approach was used finally.

Jet energy & direction resolution(3)

- Resolution
 - Energy scale: E_{jet}/E_{quark}
 - $\Delta \phi: \phi_{jet} \phi_{quark}$
 - $\Delta \theta: \theta_{jet} \theta_{quark}$
 - The resolution can be described by a covariance matrix

Covariance matrix as a function of jet energy and polar angle scale Direction angle Polar angle

11

Covariance matrix as a function of jet energy and polar angle Scale Direction angle Polar angle

How to fit to extract the ww fusion, H->bb cross-section(1)

- I hope the expected number of SM backgrounds can be determined very well by some control region. The error could be negligible.
- The expected number of ZH, Z->vv,H->bb would be measured very well by eeH, μμH and qqH channels (We also assume we have known the electroweak very very well here). But the uncertainty is still not negligible.

• The uncertainly of ZH, Z->vv, H->bb =
$$1/\sqrt{\frac{1}{\sigma_{eeH,H \to bb}^2} + \frac{1}{\sigma_{\mu\mu H,H \to bb}^2} + \frac{1}{\sigma_{qqH,H \to bb}^2}}$$

•
$$1/\sqrt{(\frac{1}{1.2\%})^2 + (\frac{1}{1.1\%})^2 + (\frac{1}{0.4\%})^2} = 0.375\%$$

How to fit to extract the ww fusion, H->bb cross-section(2)

• Construct the likelihood as

•
$$-\log L = 0.5 \left(\frac{\mu_{ZH}-1}{0.375\%}\right)^2 - P(data|\mu_{ZH}N_{ZH}pdf_{ZH} + \mu_{Zh}N_{wwf}pdf_{wwf} + N_{SM}pdf_{SM})$$

- The μ_{zh} , μ_{wwf} is events number normalized by SM prediction for ZH and WW fusion respectively.
- The statistics uncertainty was determined by output message of *Tminuit* minimizer. In my experience, this error is quite close to the value determined by toy MC (fluctuate data and repeat fit again and again).

Recoil mass with kinematic fit

raw

A simple but effective approach to do kinematic fit

• Scale the two jets moment with same factor such that their invariant mass ~ m_H

Result

5 ab ⁻¹	Fit recoil mass of 2 jets	Fit recoil mass and $oldsymbol{ heta}$ of 2 jets
Raw data	3.9%	3.8%
Kinematic fit	3.2%	3.1%
Simple Kinematic fit	3.2%	3.1%

Pre-CDR (Zhenxing based on fast simulation): 2.8%

Junping Tian's result @ ICL, 250GeV & 250fb⁻¹: 8.1% which would be **1.8%** at integrated luminosity of 5ab^01