Rare Charm Decays at LHCb

Joint BESIII/LHCb workshop - Bejing, China

Andrea Contu of behalf of the LHCb collaboration

INFN

9 Feb 2018

Outline

- Introduction
- Current status
- Opening Prospects
- Conclusions

Why study rare charm processes?

- Up-type quark: unique probe of NP in the flavour sector, complementary to studies in K and B systems
- Rare processes are very suppressed in the SM

- New Physics may be hidden in the loops
- Long-distance contributions are non-negligible and precise theoretical predictions are difficult
- Charm is more of a "discovery tool"

Charm samples

Туре	Exp	\sqrt{s}	L _{int}	$\sigma(c\bar{c})$	N(cc̄)
	prompt $c\bar{c}$				
Hadron colliders	LHCb	7, 8 TeV	3/fb	1.4 mb	3.6×10^{12}
		13 TeV	2/fb +	2.6 mb	4.4×10^{12}
	CDF	2 TeV	10/fb	0.1 mb	2.3×10^{11}
	cc̄ from continuum				
	Belle	10.6 GeV	1/ab	1.3 nb	1.3×10^{9}
$\mathrm{e^+e^-}$ collider	BaBar	10.6 GeV	550/fb	1.3 nb	0.7×10^{9}
	Charm factories at $Dar{D}$ threshold				
	BESIII	3.7 GeV	3/fb	3 nb	20×10^6
	Cleo-c	3.7 GeV	0.8/fb	3 nb	5×10^6

Pros & Cons

LHCb

- Large combinatorial backgrounds
- Decays with neutrals and missing particles are difficult
- Excellent lifetime resolution due to the boost, $\sim 0.1 \tau_D$
- Huge $c\bar{c}$ production cross sections

• Belle/BaBar

- Lower boost, poorer lifetime resolution
- Clean environment
- Excellent performance when dealing with neutrals/neutrinos

BESIII/CLEO-c

- No boost, no lifetime measurement
- Practically no background
- $\psi(3770) \rightarrow DD$, quantum coherence (can measure strong phases!)

Charm Rare Decays

 $D^0 \rightarrow \mu^+ e^-$

Wide variety of physics, ranging from forbidden to not-so-rare decays

 $D_{(s)}^+ \to \pi^+ l^+ l^-$

[PRD 66 (2002) 014009]

 $D^0 \to \pi^- \pi^+ V (\to ll)$ $D^0 \to K^{*0} \gamma$

Short distance contributions to effective $c \to u$ transitions are tiny, branching fractions dominated by long distance contributions SM predictions for the short distance part are normally $BF < 10^{-9}$, not yet there

Where do we stand?

- Focused on decays into two muons $+ \ge 0$ charged hadrons
 - Relatively high trigger efficiency
 - Combinatorial under control, we D^* tag neutral D^0 to get additional suppression.
 - Irreducible background from hadronic decays $D \to N \pi^\pm$, where N=2,3,4. Reduced by tight muonID by a factor $10^{-5}-10^{-6}$ but cannot go beyond.
- Large production cross section ensures every measurement is likely a world best

$$D^0 o \mu^+ \mu^-$$
 [PLB 725 (2013) 15-24]

- Helicity suppressed. In the SM is constrained by limit on $\mathcal{B}(D^0 \to \gamma \gamma)$ from Belle [PRD 93, 051102 (2016)] to about 10^{-12} (main contribution to the BF comes from a long distance $\gamma \gamma$ recombination)
- Hope to see NP in BF enhancements
- Best limit from LHCb at 7.6×10^{-9} at 90% CL, 1/fb only. Update is being worked on!

Multibody decays with a dilepton pair

Decays such as D[±]_(s) → h[±]I⁺I⁻,
 D⁰ → h⁺h⁻I⁺I⁻ have an overwhelming contribution from long-distance processes, through intermediate vector resonances in the dimuon spectrum

- Unlikely that NP could show up in the branching fraction
- But the richer dynamics allows to investigate A_{CP}, A_{FB} which can be up to a few percents in some NP scenarios

Search for non-resonant $D^\pm_{(s)} o \pi^\pm \mu^- \mu^+$ [PLB724(2013)203-212]

- Limit on non resonant fraction determined from low and high q^2 bins normalised to $D_{(s)}^+ \to \pi^\pm \phi (\to \mu \mu)$
- LHCb results: $\mathcal{B}(D_{(s)}^{\pm} \to \pi^{\pm}\mu^{-}\mu^{+}) < 0.83(4.8) \times 10^{-7}$, $\mathcal{B}(D_{(s)}^{\pm} \to \pi^{\mp}\mu^{\pm}\mu^{\pm}) \times 10^{-7}$ at 95% C.L.

• Similar approach also adopted for $D^0 \to \pi^+\pi^-\mu^+\mu^-$ decay yielding $BF(D^0 \to \pi^+\pi^-\mu^+\mu^-) < 5.5 \times 10^{-7}$ at 90% CL (world's best) [PLB 728 (2014) 234-243] \to dropped in favour of a model independent one..

First observation of the decay $D^0 o K^-\pi^+ ho^0/\omega (o \mu^-\mu^+)$

[PLB 757 (2016) 558-567]

- $BF(D^0 \to K^-\pi^+\mu^-\mu^+) = (4.12 \pm 0.12_{stat} \pm 0.38_{syst}) \times 10^{-6}$
- In agreement with SM predictions [JHEP 04 (2013) 135]
- Ideal normalisation mode for $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$

[PRL 119 2017)181805]

• Using 2/fb LHCb made the first observation of $D^0 \to \pi^+\pi^-\mu^+\mu^-$, $D^0 \to K^+K^-\mu^+\mu^-$

No attempt is made to distinguish between long and short distance

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$

[PRL 119 2017)181805]

• Measure differential and total BF (normalised to $\mathcal{B}(D^0 \to K^-\pi^+[\mu^+\mu^-]_{\rho^0/\omega})$ [PLB 757 (2016) 558-567])

Total branching fractions:

$$\mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$$

 $\mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

Rarest charm decays! Compatible with SM predictions [JHEP 04(2013)135]

• Statistics is enough to perform first asymmetry measurements!

Search for $\Lambda_c o p\mu^+\mu^-$ arXiv:1712.07938, submitted to PRL

• Similar approach to other analysis (split in dimoun mass regions, normalise to ϕ region)

- Significant signal (5 σ) in the ω region
- Best limit on the non-resonant component, $\mathcal{B}(\Lambda_c \to p \mu^+ \mu^-) < 7.7 \times 10^{-8}$ at 90% CL

Radiative charm decays

- Decays of the type $D^0 o \{\phi/
 ho/K^*\} \, \gamma$ are dominated by long-distance
- Measuring the BFs tests QCD based calculations of long distance dynamics
- Can probe New Physics when measuring A_{CP} (around 10^{-3} in the SM, up to several percent in NP scenarios)
- Belle recently measured BF and A_{CP} for all these modes [PRL 118, 051801 (2017)]
- Challenging to compete for LHCb due to neutral energy resolution and γ/π^0 separation, but not impossible...
- Our Run2 signal yield should exceed those from Belle, stay tuned!

Lepton flavour violation: search for $D^0 o e^+ \mu^-$ decay

 LFV is effectively forbidden in the SM but predicted to occur in some NP scenarios

No evidence seen

Best limit from LHCb [PLB 754 (2016) 167]

$$BF(D^0 o e \mu) < 1.3 (1.6) imes 10^{-8}$$
 at $90 (95) \% CL$

Moving forward

- Continuing pushing down limits/measuring branching fractions on muonic channels
- Measure asymmetries ($A_{CP}, A_{FB}...$) in multibody decays with muons. Already some activity on $D^0 \to hh\mu^+\mu^-$
- Include electrons both in dielectron and LFV multibody decays. Ongoing activity in three-body $D_{(s)}^+ \to h l l'$
- Investigate LU violation following results on the B sector by measuring $\mathcal{B}(D \to Xee)/\mathcal{B}(D \to X\mu\mu)$. If not for NP, at least as a null test
- In the LHCb upgrade yields may be sufficient to perform angular/amplitude analyses

Prospects for existing measurements

Limits on BFs for the non-resonant part

Mode	Run I	Run II	Upgrade
$D^0 o hh'\mu^+\mu^-$	few 10^{-7}	fewer 10^{-7}	10^{-8}
$D^0 o \mu^+ \mu^-$	few 10^{-9}	fewer 10^{-9}	10^{-10}
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	few 10^{-8}	fewer 10^{-8}	10^{-9}
$D_s^+ o K^+ \mu^+ \mu^-$	few 10^{-7}	fewer 10^{-7}	10^{-8}
$\Lambda o p \mu \mu$	few 10^{-7}	fewer 10^{-7}	10^{-8}
$D^0 o e\mu$	few 10^{-8}	fewer 10^{-8}	10^{-9}

Statistical precision on A_{CP}

Mode	Run II	Upgrade	
$D^+ o \pi^+ \mu^+ \mu^-$	0.6%(30K events)	0.2%(300K events)	
$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$	3%(1500 events)	1%(15K events)	
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	1%(10K events)	0.3%(100K events)	
$D^0 ightarrow K^+\pi^-\mu^+\mu^-$	40%(30 events)	12%(300 events)	
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	11%(150 events)	4%(1500 events)	

Summary and Conclusions

- Steady progress over the years, not NP yet
- Orders of magnitude better than previous experiments on fully charged final states
- Signal seen on multibody decays, now moving to asymmetries!
- Expect some results on radiative decays and electron modes
- The future of rare charm decays at LHCb (upgrade in particular) looks very bright!
- BESIII is complementary for decays which are difficult for LHCb, missing neutrinos, neutrals, etc.