



# Quantum-correlated studies in charm physics at BESIII

Xiaokang Zhou (For BESIII Collaboration)

University of Science and Technology of China(USTC)

State Key Laboratory of Particle Detection and Electronics

Feb 8<sup>th</sup>~9<sup>th</sup>, Joint BESIII-LHCb workshop in 2018





#### Quantum correlated: phase input

- **Relative D**<sup>0</sup>,  $\overline{D}$ <sup>0</sup> phases can show up:
  - 1. Quantum-correlated ("EPR") D pairs @threshold:  $\psi$ (3770)
  - 2.  $B \rightarrow DX$ , with common D,  $\overline{D}$  final states (for CKM  $\gamma$ )
  - 3. DD mixing

- I is viewed as a source of information to be input for use by 2) & 3)
- Relevant datasets are CLEO-c(~0.82fb<sup>-1</sup>) and BESIII(~2.92fb<sup>-1</sup>)
  - Access to relative D<sup>0</sup>, D<sup>0</sup> strong phase differences
  - Can obtain model-independent results

### **CKM matrix**

- 3X3 unitary complex matrix
  - 4 parameters

4

• 3 mixing angle and 1 phase

$$\begin{split} V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} &= 0, \\ \alpha &= \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right) \equiv \phi_{2}, \quad \alpha = (87.6^{+3.5}_{-3.3})^{\circ} \\ \beta &= \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{ub}^{*}}\right) \equiv \phi_{1}, \quad \sin 2\beta = 0.691 \pm 0.017 \\ \gamma &= \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right) \equiv \phi_{3}, \quad \gamma = (73.2^{+6.3}_{-7.0})^{\circ} \end{split}$$

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 [1 - (\rho - i\eta)] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \\ \lambda = \sin \theta_c$$



Large  $\gamma$ 

#### NP could lead to 4° effects PRD 92, 033002 (2015)



Principal experimental goal in CKM physics in the next decade is to reduce uncertainty to 1°

#### **Determine** $\gamma$ by B $\rightarrow$ DK

- Usually use  $B \rightarrow DK$ 
  - Include B and D amplitudes, relative strong phase and  $\gamma$

3 method

6



 $\left( \frac{K \pi^{*}}{K \pi^{*} \pi \pi^{*}} \right)_{D} K^{+}$ 

- Use K+X-(X-= $\pi^{-}$ ,  $\pi^{-}\pi^{0}$ ,  $\pi^{-}\pi^{-}\pi^{+}$ ) CF and DCS (ADS)
  - use CP-eigenstates (GLW)
- use self-conjugate multi-body states: Ksh<sup>+</sup>h<sup>-</sup> (Dalitz/GGSZ)



## DD mixing

7

Neutral D mixing parameter

$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}, \qquad m = \frac{m_1 + m_2}{2},$$
$$\Delta m = m_1 - m_2, \qquad \Delta \Gamma = \Gamma_1 - \Gamma_2,$$
$$x = \frac{\Delta m}{\Gamma}, \qquad y = \frac{\Delta \Gamma}{2\Gamma}.$$



In standard model, neutral D mixing is small

- $\propto (V_{ui}V_{ci}^*)(V_{uj}V_{cj}^*)$ , contribution from b is suppressed
- Contribution from s and d is suppressed by GIM mechanism
- Short-distance effect:  $x \sim O(10^{-5})$ ,  $y \sim O(10^{-7})$
- Long-distance effect
  - Enhanced to x,y~O(10<sup>-3</sup>)



#### Time dependent decay rates

8

D→f(example f=Kπ):  
Define: 
$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = -\sqrt{R}R_m e^{-i(\delta-\varphi)}$$
,  $\lambda_{\bar{f}}^{-1} = \frac{p}{q} \frac{\bar{A}_{\bar{f}}}{\bar{A}_{\bar{f}}} = -\sqrt{R}R_m^{-1}e^{-i(\delta+\varphi)}$   
 $\Gamma(D^0 \to K^+\pi^-) \propto \left|\frac{q}{p}\right|^2 |\bar{A}_{\bar{f}}|^2 \left[|\lambda_{\bar{f}}^{-1}|^2 - yRe\lambda_{\bar{f}}^{-1} + xIm\lambda_{\bar{f}}^{-1}\right],$   
 $\Gamma(\bar{D}^0 \to K^-\pi^+) \propto \left|\frac{p}{q}\right|^2 |A_f|^2 \left[|\lambda_f|^2 - yRe\lambda_f + xIm\lambda_f\right],$   
 $\Gamma(D^0 \to K^-\pi^+) \propto |A_f|^2 [1 - yRe\lambda_f - xIm\lambda_f],$   
 $\Gamma(\bar{D}^0 \to K^+\pi^-) \propto |\bar{A}_{\bar{f}}|^2 \left[1 - yRe\lambda_{\bar{f}}^{-1} - xIm\lambda_{\bar{f}}^{-1}\right],$   
 $\Gamma(D^0 \to K^+K^-) \propto |A_{K^+K^-}|^2 [1 - R_m(y\cos\varphi - x\sin\varphi)],$   
 $\Gamma(\bar{D}^0 \to K^+K^-) \propto |\bar{A}_{K^+K^-}|^2 [1 - R_m^{-1}(y\cos\varphi + x\sin\varphi)].$ 

$$\left|\frac{q}{p}\right| = R_m, \quad \frac{q}{p} = R_m e^{i\phi}$$

|            |            | PDG16                        |                           |  |
|------------|------------|------------------------------|---------------------------|--|
| Year       | Exper.     | y' (%)                       | $x'^{2} (\times 10^{-3})$ |  |
| 2014*†     | Belle [14] | $0.46 \pm 0.34$              | $0.09 \pm 0.22$           |  |
| 2013       | LHCb [15]  | $0.48 {\pm} 0.10$            | $0.055 {\pm} 0.049$       |  |
| 2013       | CDF [16]   | $0.43 {\pm} 0.43$            | $0.08 {\pm} 0.18$         |  |
| $2012^{*}$ | LHCb [17]  | $0.72 \pm 0.24$              | $-0.09 \pm 0.13$          |  |
| $2007^{*}$ | CDF [18]   | $0.85 {\pm} 0.76$            | $-0.12 \pm 0.35$          |  |
| 2007       | BaBar [19] | $0.97 {\pm} 0.44 {\pm} 0.31$ | $-0.22{\pm}0.30{\pm}0.21$ |  |

• Wrong sign(WS) progress  $D^0 \rightarrow K^+\pi^-$  with time(if no CPV)

$$\Gamma(D^{0}(t) \to K^{+}\pi^{-}) \propto e^{-\Gamma t} \begin{bmatrix} R + \sqrt{R}y'\Gamma t + \frac{x'^{2} + y'^{2}}{4}(\Gamma t)^{2} \end{bmatrix} \qquad \begin{aligned} \mathbf{x}' &= \mathbf{x}\cos\delta + \mathbf{y}\sin\delta \\ \mathbf{y}' &= \mathbf{y}\cos\delta - \mathbf{x}\sin\delta \end{aligned}$$

#### Relative strong phase

$$\frac{A(\overline{D}^0 \to f)}{A(D^0 \to f)} \equiv -r_D e^{-i\delta_D}$$



- Using the relevant dataset(BESIII & CLEO-c)
  - **Reduce model-dep.** of CKM  $\gamma$  from B $\rightarrow$ DK
  - Rotate measured x',y' parameters to x, y

#### Time-intergrated decay rates

- No time dependent information at charm threshold
- Anti-sysmmetric wavefunction

 $\Gamma^{2}_{ij} = \left| \langle i | D^{0} \rangle \langle j | \overline{D}^{0} \rangle - \langle j | D^{0} \rangle \langle i | \overline{D}^{0} \rangle \right|^{2}$ 

Double tag rates:

10

- $A_i^2 A_j^2 [1 + r_i^2 r_j^2 2r_i r_j \cos(\delta_i + \delta_j)]$
- CP tag:  $r=1.\delta=0$  or  $\pi$ ;  $I^{\pm}$  tag: r=0

#### Single and Double tag rates

| C-odd      | f                                     | $\bar{f}$                                                                     | <i>l</i> +     | ŀ     | СР+    | CP-   |
|------------|---------------------------------------|-------------------------------------------------------------------------------|----------------|-------|--------|-------|
| f          | $R_M [1 + r_f^2 (2 - z_f^2) + r_f^4]$ |                                                                               |                |       |        |       |
| $\bar{f}$  | $1 + r_f^2 (2 - z_f^2) + r_f^4$       | $R_{M} \left[ 1 + r_{f}^{2} \left( 2 - z_{f}^{2} \right) + r_{f}^{4} \right]$ |                |       |        |       |
| $l^+$      | $r_f^2$                               | 1                                                                             | R <sub>M</sub> |       |        |       |
| l-         | 1                                     | $r_f^2$                                                                       | 1              | $R_M$ |        |       |
| CP+        | $1 + r_f \big( r_f + z_f \big)$       | $1 + r_f \big( r_f + z_f \big)$                                               | 1              | 1     | 0      |       |
| CP-        | $1 + r_f (r_f - z_f)$                 | $1+r_f(r_f-z_f)$                                                              | 1              | 1     | 4      | 0     |
| Single Tag | $1 + r_f^2 - r_f z_f (A - y)$         |                                                                               | 1              |       | 2[1±(A | - y)] |

$$\psi(3770) \to [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$$
$$= -[D_{CP+} D_{CP-} - D_{CP-} D_{CP+}] / \sqrt{2}$$
$$D_{CP\pm} = [D^0 \pm \bar{D}^0] / \sqrt{2}$$

$$z_f \equiv 2\cos\delta_f$$
,  $r_f \equiv rac{A_{DCS}}{A_{CF}}$ ,  $R_M \approx rac{x^2 + y^2}{2}$ 

## Double Tag (DT) techniques

- Threshold production at  $\psi(3770)$ 

- D generated in pair  $\rightarrow D^0 \overline{D}^0$  and  $D^+ D^-$
- 100% of beam energy converted to D pair (Clean environment, kinematic constrains)
- Systematic uncertainties cancellations while applying double tag technique
- Quantum Correlations and CP-tagging are unique
- Fully reconstruct about 15% of D decays

$$\Delta E = E_D - E_{\text{Beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$



#### **Decay modes**

Flavored:

12

| Flavored semileptonic | K <sup>-</sup> e <sup>+</sup> ν, K <sup>-</sup> μ <sup>+</sup> ν | Pure CF   |
|-----------------------|------------------------------------------------------------------|-----------|
| Flavored hadronic     | Κ-π+ , Κ-π+π0, Κ-π+π+π-                                          | CF + DCSD |

#### Self-Conjugate:

|    | 2-body CP eigenstate   | K <sup>-</sup> K <sup>+</sup> , π <sup>+</sup> π <sup>-</sup> , | SCS                |      |
|----|------------------------|-----------------------------------------------------------------|--------------------|------|
|    | 2-body CP eigenstate   | $K_{\rm S}\pi^{0},$                                             | CF +               | DCSD |
|    | Multi body             | Κ+Κ-π+π-, π+π-3                                                 | τ <sup>0</sup> SCS |      |
| 2  | Multi body             | $K_{S}h^{+}h^{-}, K_{L}h^{+}h^{-}$                              | CF +               | DCSD |
|    |                        |                                                                 |                    |      |
| Ne | either                 | $K_S K^- \pi^+$                                                 | SCS                |      |
|    |                        |                                                                 |                    |      |
|    | Blue modes: used for γ | Green : future?                                                 | Black: tag only    |      |

## **D** $\rightarrow$ K $\pi$ strong phase

Simplified Picture: (simple = no mixing)



Amplitude triangle: CP<sub>±</sub> = CF ± DCSD [ DCSD enhanced for visibility ! ]

 $\rightarrow D \rightarrow K\pi \text{ vs } D \rightarrow CP$ 

13

Complex ratio DCSD/CF amplitude

 $\frac{\langle K^-\pi^+ | \overline{D}{}^0 \rangle}{\langle K^-\pi^+ | D^0 \rangle} = -re^{-i\delta_{K\pi}}$ 

CP-tagged rate asymmetry relative to r·cosδ, straightforward analysis

$$\mathcal{A}_{CP} = \left[ |\mathbf{A}_{CP-}|^2 - |\mathbf{A}_{CP+}|^2 \right] / \left[ |\mathbf{A}_{CP-}|^2 + |\mathbf{A}_{CP+}|^2 \right] \quad \leftarrow \text{ measure}$$
  
=  $r \cos \delta \quad (+ D \text{ mixing corrections: y, } \mathbf{R}_{ws}) \quad \leftarrow \text{ extract}$ 

#### $D \rightarrow K\pi$ strong phase measurement

2.92fb<sup>-1</sup> data

14

$$\mathcal{A}_{K\pi}^{CP} \equiv \frac{\mathcal{B}_{D^{S-} \to K^{-}\pi^{+}} - \mathcal{B}_{D^{S+} \to K^{-}\pi^{+}}}{\mathcal{B}_{D^{S-} \to K^{-}\pi^{+}} + \mathcal{B}_{D^{S+} \to K^{-}\pi^{+}}}$$

Direct result  $A_{K\pi}^{CP} = (12.7 \pm 1.3 \pm 0.7)\%$ 



 $2r\cos\delta_{K\pi} + y = (1 + R_{WS}) \cdot \mathcal{A}_{K\pi}^{CP}$ 

Using external inputs for  $r_{K\pi}$ ,  $R_{WS}$ , y, we extract :  $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$ 

PLB 734, 227(2014)

#### **D** $\rightarrow$ K $\pi$ strong phase measurement

BESIII measurement(2.92fb<sup>-1</sup>):

15

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$ 

CLEO-c measurement(0.82fb<sup>-1</sup>):

without external inputs:  $\cos \delta = 0.81^{+0.22+0.07}_{-0.18-0.05}$ 

with external inputs:  $\cos \delta = 1.15^{+0.19+0.00}_{-0.17-0.08}$ 

Agree with CLEO-c result of external inputs, CLEO-c use complex global fit

• HFLAV result: 
$$\delta_{K\pi}^{\text{HFAG}} = (11.8^{+9.5}_{-14.7})^{\circ}$$

- I think they can directly use  $A_{K\pi}^{CP}$
- ADS method for extract  $\gamma$

(do not use BESIII result)

CLEO-c: PRD 86 112001(2012) BESIII: PLB 734 227(2014)

#### **Multi-body ADS**

16

- D→Kππ<sup>0</sup> and D→Kπππ can also be used
  - Large branching fractions than  $D \rightarrow K\pi$
- Need to account for the resonant substructure

 
 Mode
 Branching Ratio

 Kπ
 3.89%

 Kππ<sup>0</sup>
 13.9%

 K3π
 8.1%

Atwood and Soni (PRD68,033003(2003)) show how to modify the usual ADS equations for this case  $\Gamma(B^- \to (K^+ \pi^- \pi^- \pi^+)_D K^-) \propto r_B^2 + (r_D^{K3\pi})^2 + 2r_B r_D^{K3\pi} R_{K3\pi} \cos(\delta_B + (\delta_D^{K3\pi}) - \gamma)$ 

- $ightarrow 
  m R_{K3\pi}$  ranges from
  - I=coherent(dominated by a single mode) to
  - O=incoherent(several significant components)

Need to find average strong phase

PRD95(2017)072010

## Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

- Understanding the substructure
- strong phase measurement  $\rightarrow \gamma$  measurement Improve the absolute BF



| Amplitude                                                                       | $\phi_i$                  | Fit fraction (%)       |
|---------------------------------------------------------------------------------|---------------------------|------------------------|
| $D^0[S] \to \bar{K}^* \rho^0$                                                   | $2.35 \pm 0.06 \pm 0.18$  | $6.5\pm0.5\pm0.8$      |
| $D^0[P] 	o \bar{K}^* \rho^0$                                                    | $-2.25 \pm 0.08 \pm 0.15$ | $2.3\pm0.2\pm0.1$      |
| $D^0[D] 	o \bar{K}^* \rho^0$                                                    | $2.49 \pm 0.06 \pm 0.11$  | $7.9\pm0.4\pm0.7$      |
| $D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$                      | 0(fixed)                  | $53.2\pm2.8\pm4.0$     |
| $D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$                      | $-2.11 \pm 0.15 \pm 0.21$ | $0.3\pm0.1\pm0.1$      |
| $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$                | $1.48 \pm 0.21 \pm 0.24$  | $0.1\pm0.1\pm0.1$      |
| $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$                | $3.00 \pm 0.09 \pm 0.15$  | $0.7 \pm 0.2 \pm 0.2$  |
| $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$                           | $-2.46 \pm 0.06 \pm 0.21$ | $3.4\pm0.3\pm0.5$      |
| $D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, \ (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$ | $-0.43 \pm 0.09 \pm 0.12$ | $1.1\pm0.2\pm0.3$      |
| $D^0 \to (K^- \rho^0)_{\rm P} \pi^+$                                            | $-0.14 \pm 0.11 \pm 0.10$ | $7.4\pm1.6\pm5.7$      |
| $D^0 \to (K^- \pi^+)_{\mathrm{S-wave}} \rho^0$                                  | $-2.45 \pm 0.19 \pm 0.47$ | $2.0\pm0.7\pm1.9$      |
| $D^0 \to (K^- \rho^0)_V \pi^+$                                                  | $-1.34 \pm 0.12 \pm 0.09$ | $0.4\pm0.1\pm0.1$      |
| $D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$                                      | $-2.09 \pm 0.12 \pm 0.22$ | $2.4\pm0.5\pm0.5$      |
| $D^0 \to \bar{K}^{*0} (\pi^+ \pi^-)_{\rm S}$                                    | $-0.17 \pm 0.11 \pm 0.12$ | $2.6\pm0.6\pm0.6$      |
| $D^0 \to (\bar{K}^{*0}\pi^-)_V \pi^+$                                           | $-2.13 \pm 0.10 \pm 0.11$ | $0.8\pm0.1\pm0.1$      |
| $D^0 \to ((K^-\pi^+)_{\mathrm{S-wave}}\pi^-)_{\mathrm{A}}\pi^+$                 | $-1.36 \pm 0.08 \pm 0.37$ | $5.6\pm0.9\pm2.7$      |
| $D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$                                | $-2.23 \pm 0.08 \pm 0.22$ | $13.1 \pm 1.9 \pm 2.2$ |
| $D^0 \to (K^- \pi^+)_{\rm S-wave} (\pi^+ \pi^-)_{\rm S}$                        | $-1.40 \pm 0.04 \pm 0.22$ | $16.3\pm0.5\pm0.6$     |
| $D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$                                      | $1.59 \pm 0.13 \pm 0.41$  | $5.4\pm1.2\pm1.9$      |
| $D^0 \to (K^- \pi^+)_{\mathrm{S-wave}} (\pi^+ \pi^-)_{\mathrm{V}}$              | $-0.16 \pm 0.17 \pm 0.43$ | $1.9\pm0.6\pm1.2$      |
| $D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$                             | $2.58 \pm 0.08 \pm 0.25$  | $2.9\pm0.5\pm1.7$      |
| $D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$                             | $-2.92 \pm 0.14 \pm 0.12$ | $0.3\pm0.1\pm0.1$      |
| $D^0 \to (K^- \pi^+)_{\rm S=wave} (\pi^+ \pi^-)_{\rm T}$                        | $2.45 \pm 0.12 \pm 0.37$  | $0.5 \pm 0.1 \pm 0.1$  |

#### **GGSZ** method

Total decay rate

18

 $\Gamma(B^{\pm} \to f(D^0)K^{\pm}) = A_B^2 A_f^2 \left( r_D^2 + r_B^2 + 2r_D r_B \cos(\delta_B + \delta_D - \gamma) \right)$ 

• Substructure allows regions of  $r_D \approx r_B$ 

- Sizeable statistics
- Latest result:
  - Model dependent:
    - **Babar:**  $\gamma = (68^{+15}_{-14} + -4^{+} 3)^{\circ}$  PRL105,121801(2015)
    - ■Belle:  $\gamma = (78^{+11}_{-12} + -4^{+} 9)^{\circ}$  PRD81,112002(2010)
  - Model independent:
    - LHCb:  $\gamma = (62^{+15}_{-14})^{\circ}$  JHEP1410,097(2014)

#### γ fit through GGSZ method

Binned decay rate:

$$\begin{split} \Gamma_i^{\pm} &\equiv \int_i d\Gamma (B^{\pm} \to (K_S^0 \pi^- \pi^+)_D K^{\pm}) \\ &= T_i + r_B^2 T_{\overline{\imath}} \pm 2r_B \sqrt{T_i T_{\overline{\imath}}} [\cos(\delta_B + \gamma) c_i - \sin(\delta_B + \gamma) s_i] \end{split}$$

- T<sub>i</sub>: Bin yield measured in flavor decays
- r<sub>B</sub> : color suppression factor~0.1
- $\delta_{\rm B}$ : strong phase of B decay
- $c_i, s_i$  : veighted average of  $cos(\Delta \delta_D)$  and  $sin(\Delta \delta_D)$  respectively where  $\Delta \delta_D$  is the difference between phase of D<sup>0</sup> and D<sup>0</sup>
  - A relationship can be shown between Dalitz bin yields and c<sub>i</sub> and s<sub>i</sub>



#### **Binning of DO** $\rightarrow$ Ks $\pi^+\pi^-$ Dalitz plot





Babar 2008 Optimal Bins





Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model. Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to  $\gamma$ . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for  $\gamma$  sensitivity.

# $D^0/D^0 \rightarrow K_S \pi^+ \pi^-$ measurement at BESIII



- Consistent with CLEO-c, better stat. err
- Reduction of contribution to uncertainty of γ meas. of 40%(80% for 20fb<sup>-1</sup>)
- The uncertainty on γ from c<sub>i</sub>,s<sub>i</sub> contribution ~2.6°(1.4°/0.9° with 10/20 fb<sup>-1</sup>)



## 22 Measurement of y<sub>cp</sub>



In absence of direct CPV:

$$y_{CP} = \frac{1}{2} \left[ y \cos\phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin\phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$

If no CPV,  $y_{cp} = y$ 

According to quantum-correlation:

$$y_{CP} \approx \frac{1}{4} \left( \frac{\mathcal{B}_{D_{CP}} \rightarrow l}{\mathcal{B}_{D_{CP}} \rightarrow l} - \frac{\mathcal{B}_{D_{CP}} \rightarrow l}{\mathcal{B}_{D_{CP}} \rightarrow l} \right)$$

• BESIII measured:  $y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$ 

Need more data or global fit



#### 23 $\pi^+\pi^-\pi^0$ & K<sup>+</sup>K<sup>-</sup> $\pi^0$ CP Fraction

- CLEO-c "Legacy data" results
- CP fraction for a mixed –CP final state:

 $F_{+} = N(CP+) / [N(CP+) + N(CP-)]$ 

• If the CP-content is nearly pure,  $F_+$  is near 1 or 0.

Result(PLB740,1(2015) ~0.82fb<sup>-1</sup>):

 $\pi^{+}\pi^{-}\pi^{0}: F_{+} = 0.968 \pm 0.017 \pm 0.006$  $K^{+}K^{-}\pi^{0}: F_{+} = 0.731 \pm 0.058 \pm 0.021$ 

The three-pion mode is nearly pure: acts *almost* like a CP-eigenstate

Analysis ongoing at BESIII

#### $\pi^+\pi^-\pi^+\pi^-$ CP Fraction & more

- CLEO-c "Legacy data" results
- Use more complex non-CP-eigenstate tags

| Results:                                                      |                     |
|---------------------------------------------------------------|---------------------|
| π <sup>+</sup> π <sup>-</sup> π <sup>+</sup> π <sup>-</sup> : | $F_{+} = 0.737 \pm$ |

24

0.028

New K<sup>+</sup> K<sup>-</sup>  $\pi^0$ : F<sub>+</sub> = 0.734 ± 0.106 ± 0.054 Combined : F<sub>+</sub> = 0.732 ± 0.055

Analysis ongoing at **BESIII** 

#### K<sub>s</sub>X vs K<sub>L</sub>X decay rate asymmetry

- The K<sub>s</sub> & K<sub>L</sub> wave-functions lead to net amplitudes that are sums and differences of the CF and DCSD amplitudes
  - Up to 10% effects, depending on a relative phase
- **BESIII** study  $K_{S}\pi^{0}(\pi^{0})$  and  $K_{L}\pi^{0}(\pi^{0})$  asymmetry

$$\mathcal{R}(D \to K^0_{S,L}\pi^0(\pi^0)) = \frac{\mathcal{B}(D \to K^0_S\pi^0(\pi^0)) - \mathcal{B}(D \to K^0_L\pi^0(\pi^0))}{\mathcal{B}(D \to K^0_S\pi^0(\pi^0)) + \mathcal{B}(D \to K^0_L\pi^0(\pi^0))}$$
  
• While  $\mathcal{B}_{sig(CP\pm)} = \frac{1}{1 \mp C_f} \frac{N_{CF,CP\pm}/\epsilon}{N_{CF}}, \quad (C_f \equiv \frac{2r\cos\delta}{1+r^2})$   
Also can be used to extract  $\gamma_{CP}$ 

$$y_{CP} = \frac{\frac{N_{K_{L}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{L}^{0}\pi^{0}, Ke\nu}}{N_{K_{L}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{L}^{0}\pi^{0}}} - \frac{N_{K_{S}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{S}^{0}\pi^{0}, Ke\nu}}{N_{K_{S}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{S}^{0}\pi^{0}}}{\frac{N_{K_{L}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{L}^{0}\pi^{0}, Ke\nu}}{N_{K_{L}^{0}\pi^{0}}/\epsilon_{K_{L}^{0}\pi^{0}}}} + \frac{N_{K_{S}^{0}\pi^{0}, Ke\nu}/\epsilon_{K_{S}^{0}\pi^{0}, Ke\nu}}{N_{K_{S}^{0}\pi^{0}}/\epsilon_{K_{S}^{0}\pi^{0}}}$$

# 26 K<sub>s</sub>X vs K<sub>L</sub>X decay rate asymmetry measurement

Flavor tag use
 Kπ, Kππ<sup>0</sup>, K3π

$$C_f = \frac{2r\cos\delta}{1+r^2}$$

$$\begin{array}{r} & C_f (\%) \\ \hline K^{\pm} \pi^{\mp} & -12.39 \pm 1.79 \\ K^{\pm} \pi^{\mp} \pi^{\mp} \pi^{\pm} & -8.73 \pm 1.62 \\ K^{\pm} \pi^{\mp} \pi^{0} & -7.02 \pm 1.25 \end{array}$$

- $R(K_{SL}\pi^{0}) = (10.94 \pm 1.24 \pm 1.82)\%$ ■  $CLEO-c(\sim 281 \text{ pb}^{-1})$ :PRL100,091801(2008)  $R(D^{0} \rightarrow K_{S,L}\pi^{0}) = 0.108 \pm 0.025 \pm 0.024$
- $\mathbb{R}(K_{SL}\pi^{0}\pi^{0}) = (-11.56 + -1.95 + -2.69)\% \text{ (measured for first time)}$   $\mathbb{R}(K_{L}\pi^{0}\pi^{0}) = (1.280 + -0.041 + -0.059)\% \text{ (measured for first time)}$

Statistical limited, previous y<sub>cp</sub>:

 $y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$ 

 $y_{CP} = (1.65 \pm 2.43 (\text{stat.}) \pm 0.56 (\text{sys.}))\%.$ 

## More studies at BESIII 27 KsKK Ν ΚΚππ Ksπ<sup>0</sup>η(ω,η') ωη / ηη / η'π<sup>0</sup> • KsK $\pi$ π<sup>0</sup>π<sup>0</sup>η / π<sup>0</sup>ηη ■ et al...

#### LHCb projections

| Runs                                    | Collected / Expected | Year     | $\gamma/\phi_3$ |
|-----------------------------------------|----------------------|----------|-----------------|
|                                         | luminosity           | attained | sensitivity     |
| LHCb Run-1 $[7, 8 \text{ TeV}]$         | $3 \text{ fb}^{-1}$  | 2012     | 8°              |
| LHCb Run-2 [13 TeV]                     | $5 \text{ fb}^{-1}$  | 2018     | $4^{\circ}$     |
| Belle-II Run                            | $50 \text{ ab}^{-1}$ | 2025     | $1.5^{\circ}$   |
| LHCb phase-1 upgrade $[14 \text{ TeV}]$ | $50 {\rm ~fb^{-1}}$  | 2030     | $< 1^{\circ}$   |
| LHCb phase-2 upgrade [14 ${\rm TeV}]$   | $300~{\rm fb^{-1}}$  | (>)2035  | $< 0.4^{\circ}$ |

If just consider GGSZ systematic uncertainty is 2~4°(CLEO-c)

Run I – $\sigma(\gamma) = 7^{\circ}$  -limited impact of strong phase measurements

- **Run II**  $-\sigma(\gamma) = 3.5^{\circ}$  -becomes significant
- Upgrade phase I  $\sigma(\gamma)$  ~ strong phase uncertainty

#### Prospects of BESIII

Now 2.9fb<sup>-1</sup> (3.5XCLEO-c)

- Preliminary result on  $c_i$  and  $s_i$  suggest  $\sim 2^0$  increase in precision
- If an additional 10fb<sup>-1</sup>(4Xdata) at BESIII, would lead to the strong phase errors being sub-leading at the end of the LHCb phase I upgrade
- Without more data the knowledge of strong phases will limit the precision of γ
- Further if LHCb has a phase II upgrade the strong phase measurement would again be limiting
- LHCb-PUB-2016 suggests 15-20 fb<sup>-1</sup>
- With 20fb<sup>-1</sup>ψ(3770) data taken by BESIII
  - $\Delta(\cos\delta_{K\pi}) \sim 5\%$
  - Uncertainty on  $\gamma$  from  $c_i$ ,  $s_i$  in D $\rightarrow$ Ks $\pi\pi \sim 0.4^{\circ}$

#### from LHCb-PUB-2016

#### Strong phases in D hadronic decays

30

|    | Decay mode                                               | Quantity of interest      | Comments                                                                                                                                                                |
|----|----------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| >  | $D \rightarrow K_{\rm s}^0 \pi^+ \pi^-$<br>prel. release | $c_i$ and $s_i$           | Binning schemes as those used in the CLEO-c<br>analysis. With future, very large $\psi(3770)$ data<br>sets, it might be worthwhile to explore alter-<br>native binning. |
|    | $D  ightarrow K_{ m S}^0 K^+ K^-$                        | $c_i$ and $s_i$           | Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.            |
| ≻  | $D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$        | $R, \delta$               | In bins guided by amplitude models, currently<br>under development by LHCb.                                                                                             |
|    | $D \rightarrow K^+ K^- \pi^+ \pi^-$                      | $c_i 	ext{ and } s_i$     | Binning scheme can be guided by the CLEO<br>model [18] or potentially an improved model<br>from LHCb in the future.                                                     |
|    | $D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$                  | $F_+$ or $c_i$ and $s_i$  | Unbinned measurement of $F_+$ . Measurements of $F_+$ in bins or $c_i$ and $s_i$ in bins could be explored.                                                             |
| >  | $D \!  ightarrow K^{\pm} \pi^{\mp} \pi^{0}$              | $R, \delta$               | Simple 2-3 bin scheme could be considered.                                                                                                                              |
| >  | $D \rightarrow K^0_{ m s} K^{\pm} \pi^{\mp}$             | $R, \delta$               | Simple 2 bin scheme where one bin encloses the $K^*$ resonance.                                                                                                         |
| >  | $D \rightarrow \pi^+ \pi^- \pi^0$                        | $F_+$                     | No binning required as $F_+ \sim 1$ .                                                                                                                                   |
| \$ | $D \rightarrow K^0_{ m s} \pi^+ \pi^- \pi^0$             | $F_+$ and $c_i$ and $s_i$ | Unbinned measurement of $F_+$ required. Additional measurements of $F_+$ or $c_i$ and $s_i$ in bins could be explored.                                                  |
| >  | $D \rightarrow K^+ K^- \pi^0$                            | $F_+$                     | Unbinned measurement required. Extensions to binned measurements of either $F_+$ or $c_i$ and $s_i$ possible.                                                           |
| ⇒  | $D \rightarrow K^{\pm} \pi^{\mp}$                        | δ                         | Of low priority due to good precision available through charm-mixing analyses.                                                                                          |

Status at BESIII
⇒ published
> under study
↓ in plan



31

Unique access to strong phases & ability to extract modelindependent results with charm at threshold (only BESIII now)

- Interest of B physics for CKM  $\gamma$  measurement

Interest of charm mixing study and searching for CPV

Future prospects are bright

More precision, new modes, new variables

# Thank you!



# $K^-\pi^+$ $K^-\pi^+\pi^0$ $K^-\pi^+\pi^-\pi^ K_S K^+\pi$ $K^+K^ \pi^+\pi^ K^+K^-\pi^+\pi^ K_S \pi^+\pi^-\pi^-\pi^-$

K<sup>-</sup>π<sup>+</sup> only δ; K<sup>-</sup>π<sup>+</sup>π<sup>0</sup>, K<sup>-</sup>π<sup>+</sup>π<sup>+</sup>π<sup>+</sup> have both R & δ
Multi-body Self-conjugate modes: If no CPV, only 2(n-1) isobar phases, not 2n-1 Need threshold data only to avoid model dependence; there is no "essential" D<sup>0</sup>-D<sup>0bar</sup> phase
4-body: more complicated angular momenta than 3-body
K<sub>s</sub> modes: CF and DCSD give K<sup>0</sup>, K<sup>0bar</sup>, not K<sub>s</sub> directly