Unbinned model-independent measurements with quantum-correlated D^0 decays

Anton Poluektov

University of Warwick, UK

8 February 2018

Introduction

- Model-independent approach to descibe multubody *D* decays can be (and is) used in various measurements
 - CKM angle γ from $B \to DK$, $DK\pi$
 - CKM angle β from $B^0 \to Dh^0$, Dhh
 - Charm mixing and CP violation in charm
- Uses the fact that we can obtain both the magnitude and phase difference between D^0 and \bar{D}^0 from data (using quantum-correlated $D^0\bar{D}^0$ pairs from CLEO/BESIII)
- Uses bins (piecewise uniform function) to approximate varying amplitude; constructed such that even though approximation is rough, physics observables are unbiased.
- Here I will show that binned approximation is not the only one possible.
- Use γ measurement in $B \to DK$, $D \to K_{\rm S}^0 \pi^+ \pi^-$ as an example, but technique could be extended to multibody B decay fits $(B \to DK\pi)$ and time-dependent fits $(\alpha$, charm mixing).
- Refer to [arXiv:1712.08326] for details

Reminder: γ from B o DK, $D o K_{\mathrm{s}}^0 \pi^+ \pi^-$

[GGSZ, 2003; Bondar, 2002]

Information on γ from Dalitz plot analysis of $D \to K_s^0 \pi^+ \pi^-$ from $B \to DK$.

Dalitz plot density: $d\sigma(m_+^2,m_-^2)\sim |A|^2dm_+^2dm_-^2$, where $m_\pm^2=m_{K_5\pi^\pm}^2$

Flavor *D* amplitude: $A_D(m_+^2, m_-^2) \equiv A_D(\mathbf{z})$

CP-conservation in $D o K_{\rm S}^0 \pi^+ \pi^-$ decays: $\overline{A}_D(m_+^2, m_-^2) = A_D(m_-^2, m_+^2)$

Amplitude of $D \to K_s^0 \pi^+ \pi^-$ from $B^+ \to DK^+$:

$$A_B(m_+^2, m_-^2) = A_D(m_+^2, m_-^2) + r_B e^{i\delta_B + i\gamma} A_D(m_-^2, m_+^2)$$

$$+ r_B e^{i\delta_B + i\gamma}$$

Need to know $A_D(m_+^2, m_-^2)$, both amplitude and phase (or, more precisely, phase difference between (m_+^2, m_-^2) and (m_-^2, m_+^2)).

Model-dependent: obtain A_D from $D \to K_s^0 \pi^+ \pi^-$ fit to the isobar model \Rightarrow model uncertainty

Model-independent: obtain phase difference info from $e^+e^- o D^0 \overline D{}^0$ decays.

Reminder: binned model-independent technique

Model-independent: use binned Dalitz plot, deal with bin yields. Use symmetric binning, $m_+ > m_-$ for i > 0, $m_+ < m_-$ for i < 0 bins. Relation between bin yields for $B^+ \to DK^+$ and flavour-specific D.

$$N_{\pm i}(B^+) = h_{B^+}[K_i + r_B^2 K_{-i} + 2\sqrt{K_i K_{-i}}(x_+ c_i + y_+ s_i)]$$

(+c.c., which is mosty omitted in this presentation).

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$
, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$ are free parameters.

To reach optimal precision, need bins where phase difference is \sim constant, so the amplitudes add up coherently across bin area.

Model-inspired binning used by CLEO (8×2 bins). [CLEO, PRD82 (2010)

Phase coefficients c_i , s_i

 $c_i = \langle \cos \Delta \delta_D \rangle$, $s_i = \langle \sin \Delta \delta_D \rangle$ measured by CLEO (BESIII) in $e^+e^- \to D^0 \bar{D}^0$. Density of correlared $D \to K_{\rm S}^0 \pi^+ \pi^-$ Dalitz plots:

$$\begin{split} p_{DD}(m_{+}^{2},m_{-}^{2},m_{+}^{\prime 2},m_{-}^{\prime 2}) &\propto |f_{D}\bar{f}_{D}^{\prime} - \bar{f}_{D}f_{D}^{\prime}|^{2} \propto \\ p_{D}\bar{p}_{D}^{\prime} + p_{D}^{\prime}\bar{p}_{D} - 2\sqrt{p_{D}\bar{p}_{D}^{\prime}p_{D}^{\prime}\bar{p}_{D}}(cc^{\prime} + ss^{\prime}) \end{split}$$

After binning:

$$M_{ij} \propto K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j)$$

which gives c_i , s_i in the fit.

 c_i , s_i are aligned around a circle, and their values are well consistent with the calculations from the $D \to K_{\rm S}^0 \pi^+ \pi^-$ model.

Do we really need 16 independent parameters to describe an (almost) circle in the phase?

Not really, but then need to go beyond simple binned approximation.

Phase coefficients c_i , s_i

 $c_i = \langle \cos \Delta \delta_D \rangle$, $s_i = \langle \sin \Delta \delta_D \rangle$ measured by CLEO (BESIII) in $e^+e^- \to D^0 \bar{D}^0$. Density of correlared $D \to K_{\rm S}^0 \pi^+ \pi^-$ Dalitz plots:

$$\begin{split} p_{DD}(m_{+}^{2},m_{-}^{2},m_{+}^{\prime 2},m_{-}^{\prime 2}) &\propto |f_{D}\bar{f}_{D}^{\prime} - \bar{f}_{D}f_{D}^{\prime}|^{2} \propto \\ p_{D}\bar{p}_{D}^{\prime} + p_{D}^{\prime}\bar{p}_{D} - 2\sqrt{p_{D}\bar{p}_{D}^{\prime}p_{D}^{\prime}\bar{p}_{D}}(cc^{\prime} + ss^{\prime}) \end{split}$$

After binning:

$$M_{ij} \propto K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j)$$

which gives c_i , s_i in the fit.

 $c_i,\ s_i$ are aligned around a circle, and their values are well consistent with the calculations from the $D o K_{\rm S}^0 \pi^+ \pi^-$ model

Do we really need 16 independent parameters to describe an (almost) circle in the phase?

Not really, but then need to go beyond simple binned approximation.

Model-independent formalism with weighted integrals

Charm data observables:

$$p_D(\mathbf{z}) = |A_D(\mathbf{z})|^2, \quad \bar{p}_D(\mathbf{z}) = |\overline{A}_D(\mathbf{z})|^2$$

 $B^{\pm} \rightarrow DK^{\pm}$ data observables:

$$\bar{p}_B(\mathbf{z}) \propto p_D(\mathbf{z}) + r_B^2 \bar{p}_D(\mathbf{z}) + 2[x_+ C(\mathbf{z}) - y_+ S(\mathbf{z})]$$

 $p_B(\mathbf{z}) \propto \bar{p}_D(\mathbf{z}) + r_B^2 p_D(\mathbf{z}) + 2[x_+ C(\mathbf{z}) + y_+ S(\mathbf{z})]$

Quantum-correlated $D^0 \overline{D}{}^0$ data observables:

$$p_{DD}(\mathbf{z}_1, \mathbf{z}_2) \propto p_D(\mathbf{z}_1) \bar{p}_D(\mathbf{z}_2) + p_D(\mathbf{z}_2) \bar{p}_D(\mathbf{z}_1) - 2 \left[C(\mathbf{z}_1) C(\mathbf{z}_2) + S(\mathbf{z}_1) S(\mathbf{z}_2) \right]$$

Unknowns:

$$C(\mathbf{z}) = \operatorname{Re}\left[A_D^*(\mathbf{z})\overline{A}_D(\mathbf{z})\right], \quad S(\mathbf{z}) = \operatorname{Im}\left[A_D^*(\mathbf{z})\overline{A}_D(\mathbf{z})\right].$$

We want to relate $p_D(\mathbf{z})$, $\bar{p}_B(\mathbf{z})$ and $p_{DD}(\mathbf{z}_1, \mathbf{z}_2)$ and eliminate $C(\mathbf{z})$, $S(\mathbf{z})$. We need a way to do it with scattered experimental data.

Model-independent formalism with weighted integrals

Trick: replace all functions $f(\mathbf{z}) o \int\limits_{\mathcal{D}} f(\mathbf{z}) w_n(\mathbf{z}) d\mathbf{z}$

where $f(\mathbf{z}) = p_D(\mathbf{z}), \overline{p}_B(\mathbf{z}), C(\mathbf{z}), S(\mathbf{z}).$

 $w_n(\mathbf{z})$, $1 \leq n \leq N$ is a family of certain weight functions.

Similarly,
$$p_{DD}(\mathbf{z}_1, \mathbf{z}_2) \rightarrow \int\limits_{\mathcal{D}} p_{DD}(\mathbf{z}_1, \mathbf{z}_2) w_m(\mathbf{z}_1) w_n(\mathbf{z}_2) d\mathbf{z}_1 d\mathbf{z}_2$$

All the equations will still hold, for any $w_n(\mathbf{z})$.

For scattered data, replace integrals by sums over individual events.

Binned approach is a particular case with

$$w_n(\mathbf{z}) = \left\{ egin{array}{ll} 1 & ext{if } \mathbf{z} \in \mathcal{D}_n \\ 0 & ext{otherwise} \end{array}
ight. ext{for bins defined by } \mathcal{D}_n.$$

Altermative approach: Fourier analysis of the modelled phase difference

$$w_{2n}(\mathbf{z}) = \sin n\Phi(\mathbf{z}), \quad w_{2n+1} = \cos n\Phi(\mathbf{z})$$

where

$$\Phi(\mathbf{z}) = \arg A_D^{(\mathrm{model})}(\mathbf{z}) - \arg \overline{A}_D^{(\mathrm{model})}(\mathbf{z})$$

Fourier analysis approach

Let's see why Fourier analysis approach is more optimal

We already use model to define optimal binning, the first step is just a continuous generalisation: instead of bins in $\Delta\phi$ we use a continuous variable ϕ . E.g. for $D \to K_{\rm S}^0 \pi^+ \pi^-$ Dalitz plot, define

$$\Phi(m_+^2, m_-^2) = \arg A_D^{(\mathrm{model})}(m_+^2, m_-^2) - \arg A_D^{(\mathrm{model})}(m_-^2, m_+^2)$$

Instead of binning in $\Phi(z)$, deal with continuous 1D distribution:

$$p_D(\phi) = \int_{\Phi(\mathcal{D}) = \phi} p_D(\mathcal{D}) d\mathcal{D}$$

It is just a PDFs of the $\phi = \Phi(\mathcal{D})$ variable for the flavour D sample $(\mathcal{D} \equiv (m_+^2, m_-^2))$.

Define all functions of ϕ similarly $(\bar{p}_B(\phi), p_{DD}(\phi_1, \phi_2), C(\phi), S(\phi))$

 $C(\phi)$ is even, $S(\phi)$ is odd by construction

Fourier analysis approach

Now we have relation between 1D $p_D(\phi)$ distributions for flavour D and 2D $p_{DD}(\phi_1, \phi_2)$ distributions for correlated $D^0 \bar{D}^0$:

$$p_{DD}(\phi_1, \phi_2) \propto p_D(\phi_1)\bar{p}_D(\phi_2) + \bar{p}_D(\phi_1)p_D(\phi_2) - 2[C(\phi_1)C(\phi_2) + S(\phi_1)S(\phi_2)]$$

This constrains $S(\phi)$ and $C(\phi)$, which we can apply to $B^+ \to DK^+$:

$$\bar{p}_B(\phi) \propto p_D(\phi) + r_B^2 \bar{p}_D(\phi) + 2[x_+C(\phi) - y_+S(\phi)],$$

and extract x and y (and thus γ , after adding B^-).

We still need a way to parametrise functions $C(\phi)$ and $S(\phi)$ to deal with scattered data.

These functions are continuous, periodic, and *resemble* $\cos \phi$ and $\sin \phi$, so Fourier series is a natural parametrisation.

- Calculating Fourier transformation of scattered data is easy.
- Most of the information will already be contained in the leading Fourier term!

Equations for coefficients of Fourier series

So, $p_D(\phi)$ will be parametrised by Fourier series:

$$p_D(\phi) = \frac{a_0^D}{2} + \sum_{n=1}^{M} [a_n^D \cos(n\phi) + b_n^D \sin(n\phi)],$$

similarly for $\bar{p}_B(\phi)$ (coeffs a_n^B , b_n^B), $C(\phi)$ (coeffs a_n^C , only cosine terms), $S(\phi)$ (coeffs b_n^S , only sine terms) $p_{DD}(\phi_1,\phi_2)$ (coeffs a_n^{DD} , b_n^{DD} , c_{nm}^{DD} , and d_{nm}^{DD})

They will be related as

$$\begin{split} a_{mn}^{DD} &= 2h_{DD} \left(a_{m}^{D} a_{n}^{D} - a_{m}^{C} a_{n}^{C} \right), \\ b_{mn}^{DD} &= c_{mn}^{DD} = 0, & \text{for } D^{0} \overline{D}{}^{0} \text{ data} \\ d_{mn}^{DD} &= -2h_{DD} \left(b_{m}^{D} b_{n}^{D} + b_{m}^{S} b_{n}^{S} \right). \end{split}$$

and

$$egin{aligned} \mathbf{a}_{n}^{B} &= h_{B} \left[(1 + r_{B}^{2}) a_{n}^{D} + 2 x_{-} a_{n}^{C} \right], \\ \mathbf{b}_{n}^{B} &= h_{B} \left[(1 - r_{B}^{2}) b_{n}^{D} + 2 y_{-} b_{n}^{S} \right]. \end{aligned} \qquad ext{for } B o DK ext{ data}$$

System of equations, can be solved for any $M \geq 1$ with maximum likelihood fit

Large flavour-specific $D o K_{\rm S}^0 \pi^+ \pi^-$ sample: 10^7 events

 $p_D(\phi)$ density and its spectral coefficients.

Blue line is expansion up to M=1 (first term in Fourier series)

Large $B^+ \to DK^+$ sample: 10^5 events

 $\bar{p}_B(\phi)$ density and its spectral coefficients.

Blue line is expansion up to M = 1 (first term in Fourier series)

Large quantum-correlated $D\overline{D}$ sample: 10^6 events

 $p_{DD}(\phi_1, \phi_2)$ density and its (2D) spectral coefficients

This allows us to calculate $(a,b)_n^{C,S}$ and reconstruct $C(\phi)$ and $S(\phi)$ (although to measure γ we don't need explicit functions, only coefficients)

Spectral coefficients for $C(\phi)$ and $S(\phi)$ functions and reconstructed functions As expected, largest "power" is in the 1st harmonics, $\cos\phi$ term for $C(\phi)$ and $\sin\phi$ term for $S(\phi)$

■ With M=1, only 3 free parameters of the D^0 amplitude: a_0^C , a_1^C and b_1^S

Finally, perform γ fit. $10^4~B^+ \to DK^+$ decays with $\gamma = 60^\circ$, 1000 toy samples.

Check that the method is \sim unbiased for any number of harmonics M, as well as if "wrong" model is used for phase variation $\Phi(m_+^2, m_-^2)$:

Reduced model: a simplified $D \to K_s^0 \pi^+ \pi^-$ model with only $K^*(892)$, ρ , ω , $f_0(980)$ + flat non-resonant term, used only for phase difference mapping (i.e. different from the generated one).

Further improvement: split Dalitz plot

Using only phase difference information is not optimal, because regions with different $|A_D|$ are treated equally. In the binned approach: "optimal" binning from stochastic optimisation of a certain FoM.

A straightforward solution for Fourier analysis: split Dalitz plot.

Split phase space into two regions, with $|A_{\rm p}^{({\rm model})}(\mathbf{z})| > |\overline{A}_{\rm p}^{({\rm model})}(\mathbf{z})|| \quad (\mathcal{D}^+)$

and

$$|\mathcal{A}_{D}^{(\mathrm{model})}(\mathbf{z}) < |\overline{\mathcal{A}}_{D}^{(\mathrm{model})}(\mathbf{z})|| \qquad (\mathcal{D}^{+})$$

Perform Fourier analysis separately in the two regions

Can consider splitting into more regions.

More fitted parameters, but better follow |A|, needs optimisation.

$$10^7~D\to K_{\rm S}^0\pi^+\pi^-$$
 , $10^5~D\overline{D}$, $10^4~B^+\to DK^+$, 1000 toy MC samples

Very large sample of $D\overline{D}$ events \Rightarrow precisely defined phase dependence. Weak dependence on number of harmonics, first one dominates.*

 * Not guaranteed to be the case for any D decay, or if D model used for phase differs from true one

Equal samples of $D\overline{D}$ and B events (\sim current situation for $B \to DK$). $D^0\overline{D}^0$ sample does not dominate in uncertainty

$$10^7~D o K_{\rm S}^0 \pi^+ \pi^-$$
, $1000~D\overline{D}$, $10^4~B^+ o DK^+$, $1000~{
m toy}~{
m MC}$ samples

Very small sample of $D\overline{D}$ events (1/10th of B sample). Low number of free parameters of D^0 amplitude is an advantage.

Sample size	γ resolution, $^{\circ}$		
	Binned optimal	Fourier non-split	Fourier split
$2 imes 10^4~B^\pm o DK^\pm$, $10^3~D^0 \overline{D}{}^0$	$\textbf{4.33} \pm \textbf{0.10}$	$\textbf{4.54} \pm \textbf{0.10}$	3.73 ± 0.08
$2 imes 10^4~B^\pm o DK^\pm$, $10^4~D^0\overline{D}{}^0$	3.60 ± 0.08	$\textbf{4.51} \pm \textbf{0.10}$	3.43 ± 0.08
$2 imes 10^4~B^\pm o D K^\pm$, $10^5~D^0 \overline{D}{}^0$	$\textbf{3.49} \pm \textbf{0.10}$	$\textbf{4.47} \pm \textbf{0.10}$	3.32 ± 0.08

For reference:

- lacksquare Model-dependent approach: $\sigma(\gamma)=2.91\pm0.07^\circ$
- $lue{B}$ sample used here is roughly imes 10 LHCb Run I sample
- CLEO: 470 events of $D^0 \bar{D}^0 \to (K_{\rm s}^0 \pi^+ \pi^-)^2$ (+ other combinations, notably with $K_L^0 \pi^+ \pi^-$)

Possible further improvements

Fourier analysis is a good approximation to the optimum, but still not perfect: $|A_D|$ information is either ignored (non-split) or taken very roughly (split approach).

How do we choose the set of weight functions $w_n(\mathbf{z})$ such that γ precision is optimal?

Just a thought: can try to use machine learning technique:

- Choose generic $w_n(\mathbf{z})$ parametrisations with e.g. NN or BDT. (or $w_n(\phi, |A_D|, |\overline{A}_D|)$)
- Apply $w_n(\mathbf{z})$ to a set of toy MC samples, run γ fit.
- \blacksquare Use $|\gamma_{\rm rec}-\gamma_{\rm sim}|^2$ as cost function, and apply ML to minimise cost.

The optimal solution will likely depend on $B\to DK$ and $D^0\bar{D}^0$ samples, as well as on background levels.

Summary

- Quantum-correlated $D^0 \bar{D}^0$ data are **essential for many fundamental measurements**, including CKM γ , β and charm mixing.
- These measurements have **extremely low theory uncertainties**, so any improvement in statistical treatment immediately pays off.
- Propose an approach alternative to conventional model-independent binned technique
 - Instead of performing model-independent fits in (limited number of) bins of the phase space, one works with coefficients of Fourier series of the phase difference spectrum.
 - Needs less parameters than binned technique: already the leading term in Fourier series contains most of the information.
 - Minimum: only 3 parameters to describe the phase variations.
 - More efficient use of QC data, could be useful when QC sample is limited, e.g. $B \to DK$ with $D \to 4h$ or $B \to DK\pi$, $D \to K_{\rm S}^0 \pi^+ \pi^-$ double Dalitz.
- Further improvements possible, need more study.

Fourier coefficients from scattered data

Calculation of Fourier coefficients from scattered data $\phi^{(i)}$:

$$a_n = \frac{1}{\pi} \sum_{i=1}^{N} \cos(n\phi^{(i)}), \quad b_n = \frac{1}{\pi} \sum_{i=1}^{N} \sin(n\phi^{(i)}),$$

For ML fit, also need covariance matrix (uncertainties and correlations) coming from the limited sample size. It can be calculated by applying Poisson bootstrapping: each term entering the sum is multiplied by a Poisson-distributed random number with mean of 1.

E.g. dispersion is calculated from central limit theorem:

$$\sigma^{2}(a_{n}) = \frac{1}{\pi} \sum_{i=1}^{N} \cos^{2}(n\phi^{(i)}), \quad \sigma^{2}(b_{n}) = \frac{1}{\pi} \sum_{i=1}^{N} \sin^{2}(n\phi^{(i)}),$$

This is a certain approximation, but seems to work well for N>100 (pulls are compatible with 1).