Requirements on BR measurements from LHCb, esp. $B \rightarrow D^* \tau v$

GUY WORMSER LAL, CNRS/IN2P3, PARIS SACLAY UNIVERSITY

LHCB_BESIII WORKSHOP BEIJING, FEB 8, 2018

universitė

Talk outline

- Motivation for absolute branching fractions measurements
- Motivation for a complete set of new measurements for inclusive decays of charm mesons into $3\pi(X)$
 - Presentation of LHCb results on R(D*)
 - Run2 projections and beyond
 - > Details about what are needed
- This program has already started 😳
 - Next steps

Conclusion

Motivation for absolute Branching Fractions

- LHCb has often the need to measure an absolute franching fraction for particular decay of a B hadron species:
 - ο Λ_b to Λ_c μν is a typical example
 - For this one needs to know the production rate of B baryons at LHC times the branching fraction of Λ_c to pK π , whic is sued to reconstruct the Λ_c
- This branching fraction « irrigates » all the B baryon sector since all decay modes are normalized to this one.
- The best precision is required for the main decay mode of the $\Lambda_c\,(pK\pi)$ and $D_s\,(KK\pi)$

[⊖] Total BR

^O And also internal dynamics

Λ_c^+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/d			
Hadronic modes with a p: $S = -1$ final states					
pK_{S}^{0} $pK^{-}\pi^{+}$ $p\overline{K}^{*}(892)^{0}$ $\Delta(1232)^{++}K^{-}$	(1.58± 0.08) 9				
$pK^{-}\pi^{+}$	(6.35 ± 0.33)	% S=1.4 82			
р К *(892) ⁰	[r] (1.98± 0.28) 9	68			
$\Delta(1232)^{++}K^{-}$	(1.09 ± 0.25)	% 71			
$\Lambda(1520)\pi^+$	[r] (2.2 ± 0.5) 9	62			
	(3.5 ± 0.4)	% 82			
$pK^{-}\pi^{+}$ nonresonant $pK_{S}^{0}\pi^{0}$	(3.5 ± 0.4)	0 02			

Total BR is now know with 5% precision, internal dynamics to only 10%. This BR uncertainty has significantly improved but is still a dominant factor in several LHCb analysis.

universitė

Lepton Universality is the hottest game in town

- Lepton Universality is one the the pillars of the SM
- It predicts equal properties of e,m and t , except for obvious phase space effects.
- However, the largest hints of a potential SM breaking lie precisely in this area:
 - 4 σ deviation in $R(D^*)$ -R(D) measurements
 - $\circ~2.5\,\sigma$ from Kll and K*ll decays

• Some NP physics scenarios can explain both effects at the same time (cf LHCb Semitauonic workshop recently organised in Orsay)

o https://indico.cern.ch/event/648989/

Where to look for LFU

- In rare K decays
 - ο πee, πµµ (known το 6%) hadronic effects
- In rare D decays
 - K(*)ee, K(*) $\mu\mu$ → BES_III (today only limits) (beware :hadronic effects)
- In B decays
 - The only place where to look for e/mu/tau comparison
 - At tree level in Charged current interactions
 - o in supressed neutral current reactions
 - Can also to be searched for, in annihilation reactions

 D_s,D⁺→τν D_s,D⁺→ μν, → BES_III (beware :hadronic effects) Semileptonic Vub decays b->uτν probe the same vertex as the annihilation (LHCb) B⁺→ppτν, Λ_b→ pτν)

The criterium for a good LFU

- Very robust theoretical prediction
- Experimental precision in the same ball park
- High sensitivity to new physics (involving third family of quarks and/or leptons)
- Two channels meet these criteria :
 - B→K(*)l+l- R(K*)=K*µµ/K*ee
 - B →D(*) τν $R(D*)=D*\tau v/D*\mu v$

BES-III input is required!!!

- In 2018-2020, LHCb will publish its semitauonic RunII-based results. The statistical precision for the favoured modes $(R(D^*),R(D), R(\Lambda_c))$ will be significantly below 5%
- ... To be followed by BELLE-II
- We must try to launch now an HEP-wide effort to measure all the important « bread-and-butter » measurements that play a significant role in the systematic uncertainty budget
- Some impact all R(D) measurements, some are quite specific..
- Some can be performed in several experiments, some only in a single one....
 - BABAR/BELLE for normalization B decays
 - BES-III for charm meson decay model

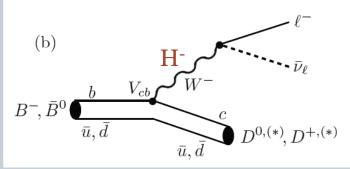
Why semitauonic decays are interesting? Very simple b->c W system

• Tree Level decays combine the advantages :

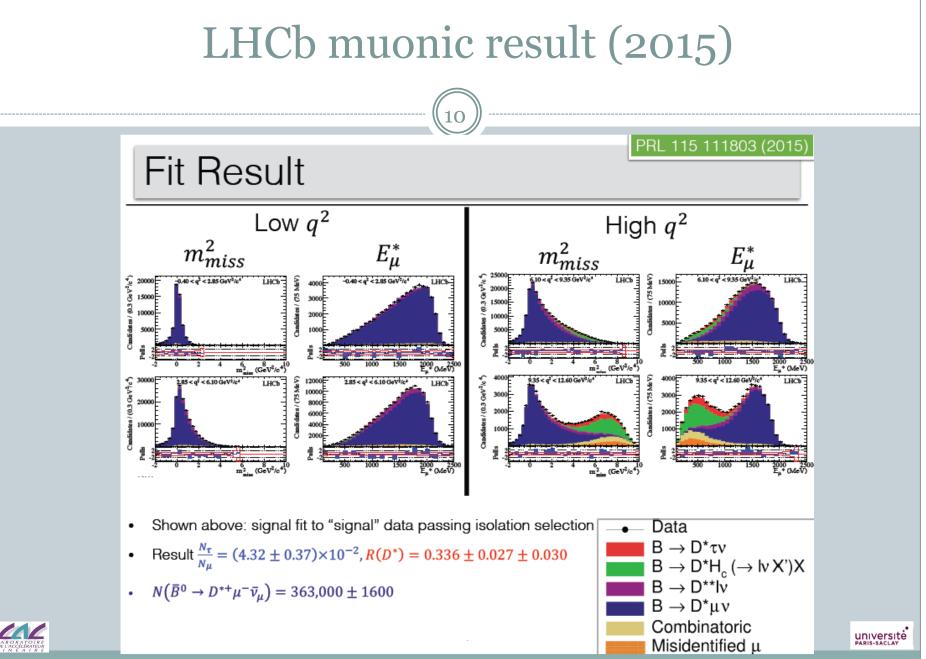
- Very precise prediction from SM :R(D*) known better than to 2% precision, using R(D*) =(B→D* $\tau\nu/B$ →D* $\mu\nu$)
- Abundant channel BR($B^{\circ} \rightarrow D^{*} \tau \nu$)=1,24%, one of the largest individual BR
- Sensitivity to new physics : (simplest realization) A charged Higgs will automatically couple more to the τ. LFU violation can also occur through other mechanisms (leptoquarks,..)

• They offer several hadronisation implementations:

o D*,D°,D+,Ds, Λ_c ,J/ ψ


LHCb-BES workshop, Feb 8 2018

• Differing not only by various properties of the spectator particle but also its spin 0,1(D* and J/ ψ) and $\frac{1}{2}$ (Λ_c !!)


$$\frac{\mathrm{d}\Gamma^{SM}(\bar{B}\to D^{(*)}\ell^{-}\bar{v}_{\ell})}{\mathrm{d}q^{2}} = \underbrace{\underbrace{G_{F}^{2} |V_{cb}|^{2} |p_{D^{(*)}}^{*}| q^{2}}_{96\pi^{3}m_{B}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2}}_{\text{universal and phase space factors}} (3)$$

$$\times \underbrace{\left[(|H_{+}|^{2} + |H_{-}|^{2} + |H_{0}|^{2}) \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) + \frac{3m_{\ell}^{2}}{2q^{2}}|H_{s}|^{2}\right]}_{\text{hadronic effects}}.$$

$$\mathbf{ArXiv: HEP-1703-017666}$$

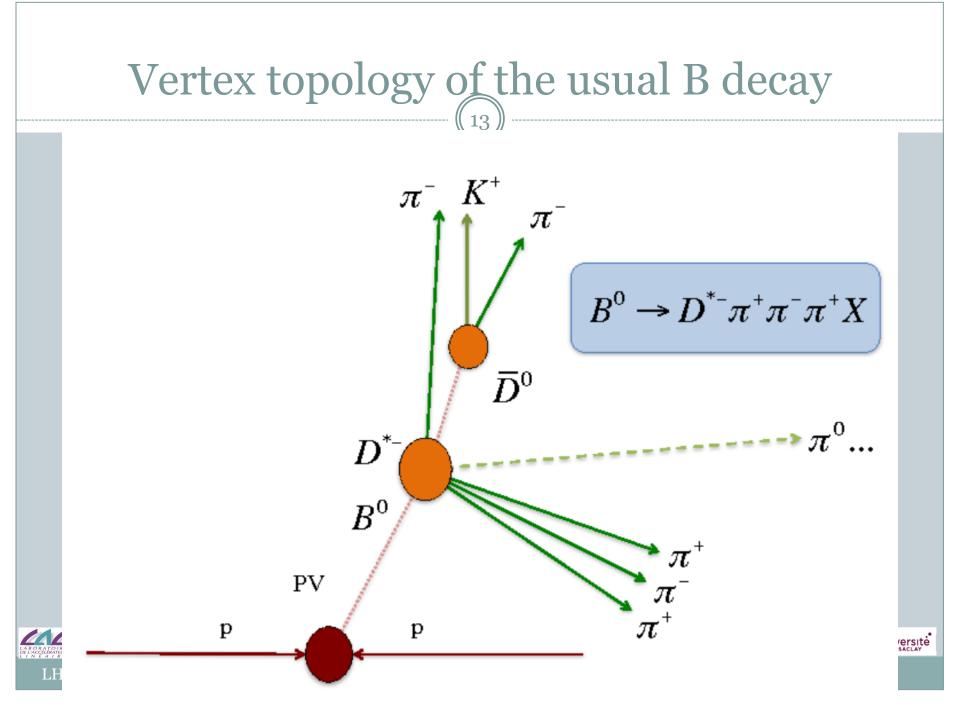
universitė

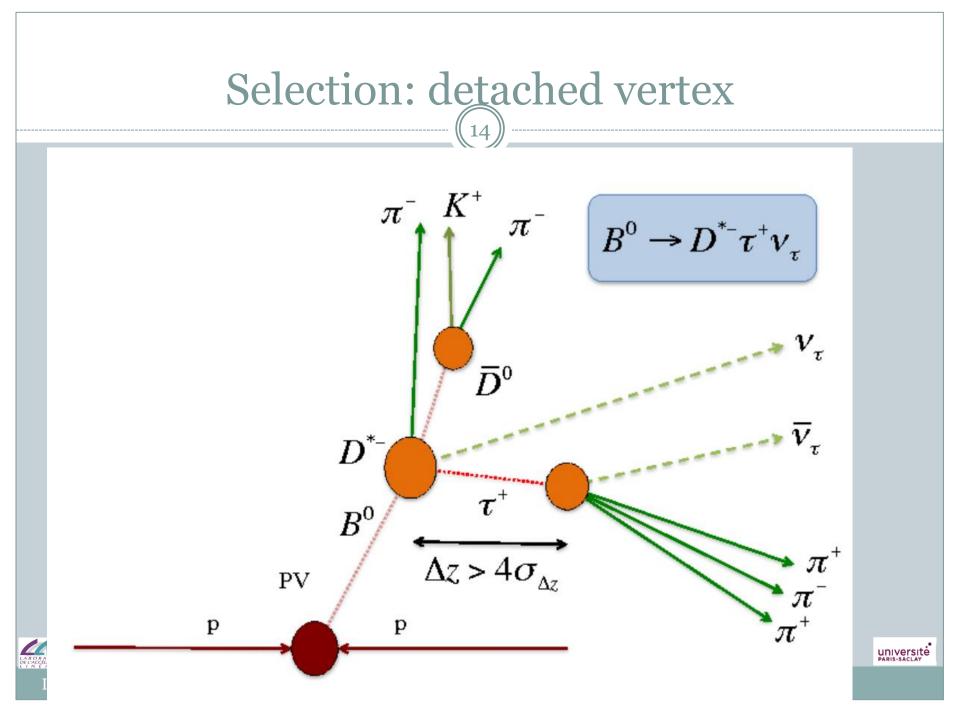
The unusual features of the LHCb analysis $D^*\tau\nu; \tau \rightarrow 3\pi(\pi^\circ)$

A semileptonic decay without (charged) lepton !!:
 • ZERO background from normal semileptonic decays!!!!

11

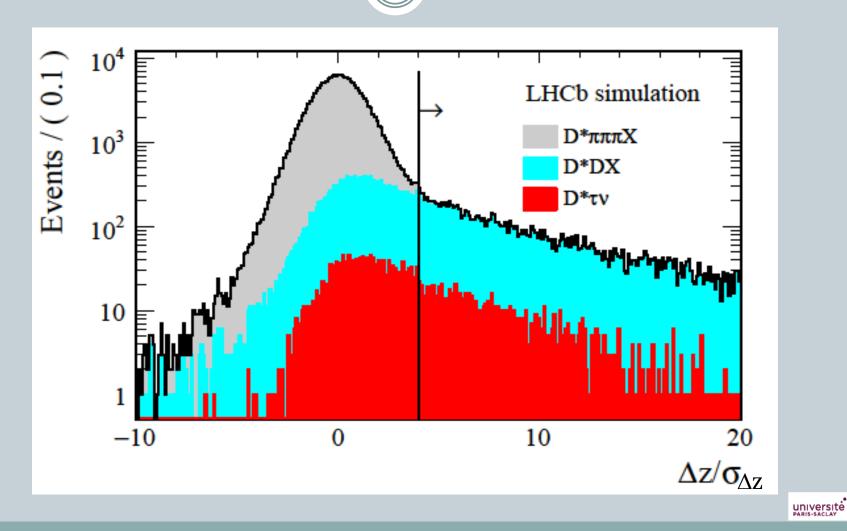
- In this analysis, it is the background that leads to nice mass peaks and not the signal !!!
 - This provides key handle to control the various backgrounds
- Only 1 neutrino emitted at the τ vertex
 - The complete event kinematics can be reconstructed with good precision
- No sensitivity to τ polarisation through $P_{3\pi}$ ($m_{a_1}^2 \approx 0.5^* m_{\tau}^2$)
- Note : measure R(D*-) and not R(D*) as B Factories


The initial very large background


- The D^{*} $\tau\nu$ decay, with τ going into 3 pions (it can also be $3\pi + \pi^0$) leads to a D^{*} $3\pi(+X)$ final state
- Nothing is more common than a $D^*3\pi$ (+X) final state in a typical B decay :

 $BR(B^{o} \rightarrow D^{*}3\pi + X)/BR(B^{o} \rightarrow D^{*}\tau\nu;\tau \rightarrow 3\pi)_{SM} \sim 100$

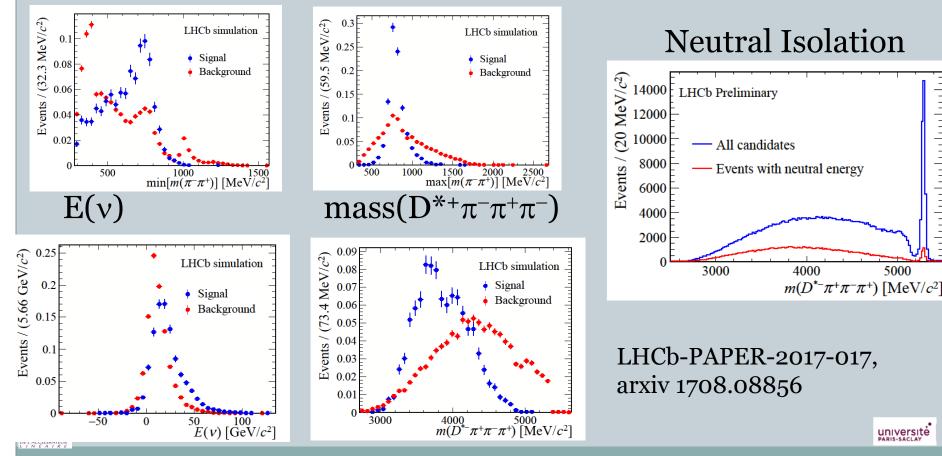
A very strong background suppression method is absolutely needed : <u>The DETACHED VERTEX METHO</u>

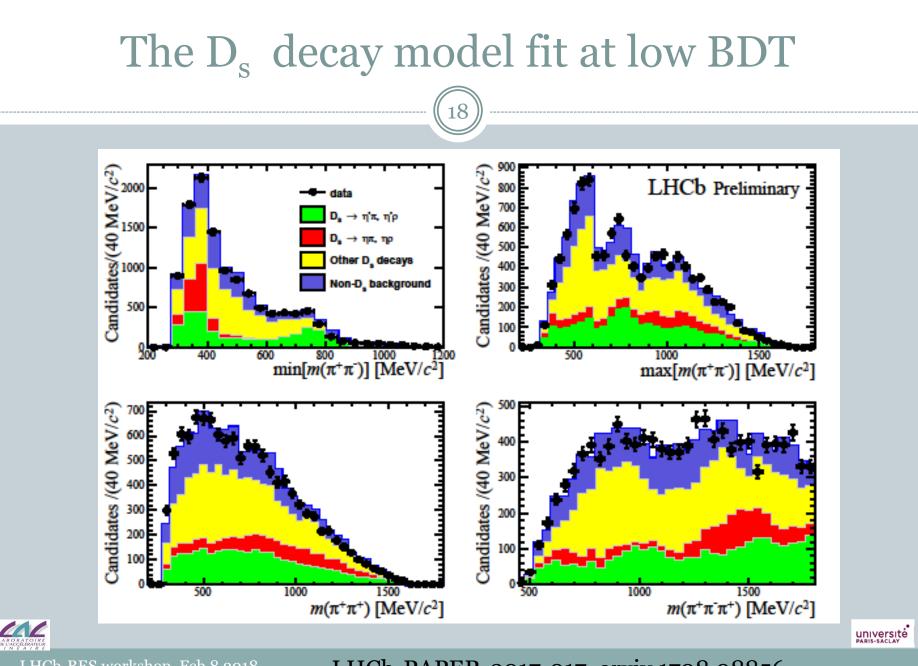


Selection: the detached vertex method LHCb-PAPER-2017-017 arxiv 1708.08856

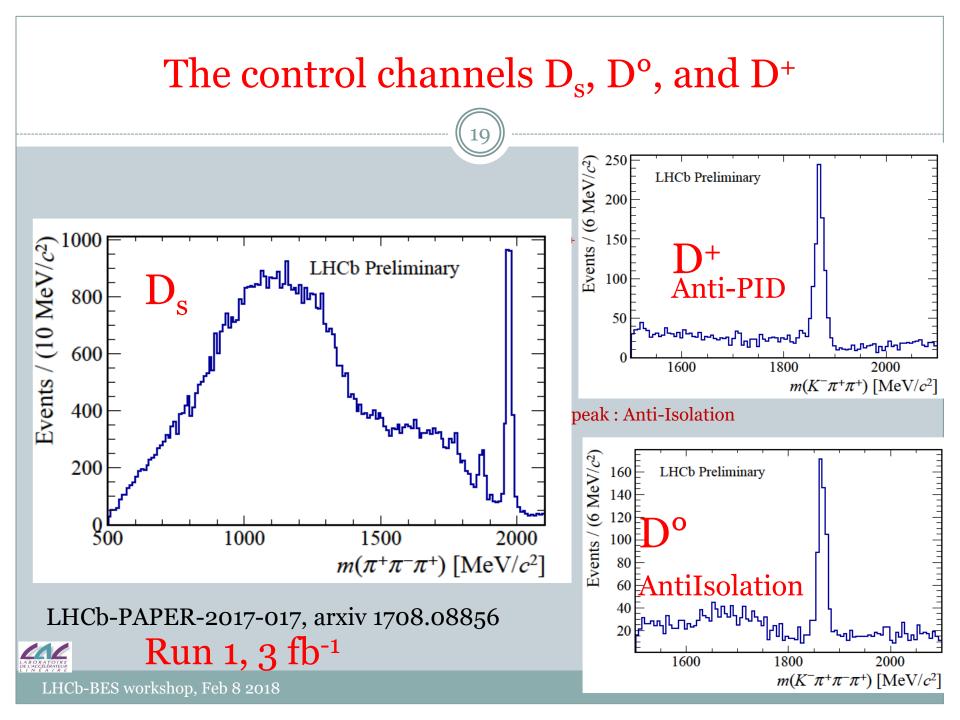
15

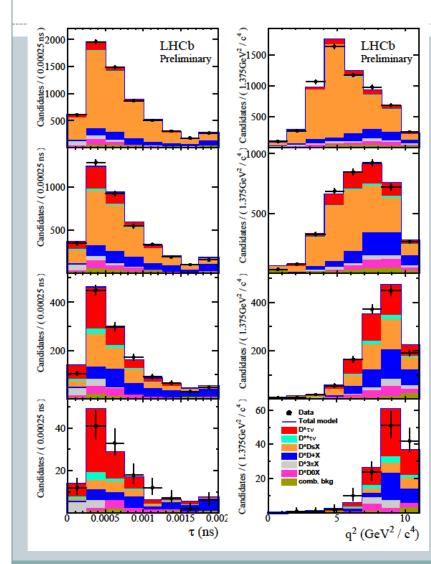
The inclusive D_s decays in 3 pions


- The W→cs̄ decays can produce a single meson D_s, very often in an excited state D_s*, D_s** or two particles D^oK⁻, D⁺K^o, and their excited counterparts
- Although the exclusive $D_s \rightarrow 3\pi$ is small (1% BR), the D_s is an amazingly rich source of $3\pi + X$ final states (~25%!)
- We classify hadronic D_s decays into 3 pions in 4 categories
 - ο ηπX (ηπ,ηρ) η'πX(η'π,η'ρ)
 - ο (ϕ/ω) πX (ϕ/ω π, ϕ/ω ρ) M3π, where M can be v,K°,η,η',ω, ϕ
- We do not have precise BR for all of these (some well measured, some poorly, some not at all)
- The inclusive BR of Ds into 3 pions that could constraint all of these is not known either
 - We extract these informations from LHCb data



The anti-D_s BDT : 3π dynamics, partial reconstruction and isolation


$Min(mass(\pi^+\pi^-)) \quad Max(mass(\pi^+\pi^-))$



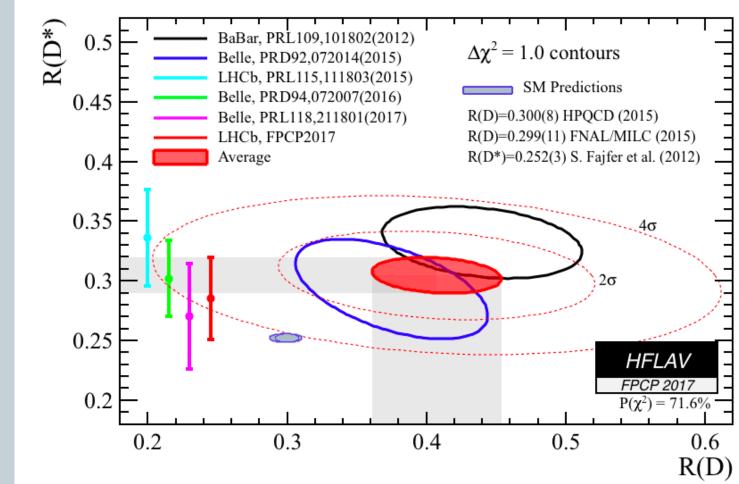
LHCb-BES workshop, Feb 8 2018

LHCb-PAPER-2017-017, arxiv 1708.08856

Fit results LHCb-PAPER-2017-017, arxiv 1708.08856

- The 3D template binned likelihood fit results are presented for the lifetime and q² in four BDT bins.
- The increase in signal (red) purity as function of BDT is very clearly seen, as well as the decrease of the D_s component (orange)
- The dominant background at high BDT becomes the D⁺ component (blue), with its distinctive long lifetime.
- The overall χ^2 per dof is 1.15

Systematic uncertainties table


21

Contribution	Value %
Simulated sample size	4.7
Signal modeling	1.8
$D^{**}\tau \mu$ and $D^{**}_{*}\tau \mu$ feed downs	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Total internal uncertainty	8.9
$\mathcal{B}(B^0 \to D^* 3\pi)$ and $\mathcal{B}(B^0 \to D^* \mu \nu_\mu)$	4.5

The new FPCP average

22

Combined signifance: 4.1 σ away from SM

LHCb-PAPER-2017-017, arxiv 1708.08856

 $BR(B^{\circ} \rightarrow D^{*}\tau\nu)/BR(B^{\circ} \rightarrow D^{*}3\pi)=1.93\pm0.13(\text{stat})\pm0.17(\text{syst})$

BR(B°→D^{*+}τν)=(1.39±0.09(stat) ±0.12(syst)±0.06(ext))% Using for BR(B°→D^{*}3π)the new PDG 2017 WA of 0,721±0.029 to be compared with the PDG(2017) (1.67±0.13)% New (naive) average BR(B°→D^{*}τν) =(1.56±0,10)% R(D^{*})=0.285±0.019(stat) ±0.025(syst) ±0.013(ext) Using the HFLAV BR(B°→D^{*}μν)=(4,88±0,10)%

Experiment	Method	N evts $B \rightarrow D^* \tau v$	N evts B° \rightarrow D ^{*+} τ -v
BABAR	Leptonic hadronic tag	888 <mark>±6</mark> 3	245±27
BELLE	Leptonic hadronic tag	503±65	0,4x503=200
BELLE	Single pi hadronic tag	88 ±11	88 ±11
LHCb	3π Hadronic	1273±95	1273±95

Precision Goals for Run1+Run2 data

- Run2 =2015+2016 (already available) + 2017
- Statistical precision ~4%-3%
- Internal systematic precision $\sim 5\%$ (if we can get new results from BES)
- External systematic precision ~3% (if we can get new results from BELLE-1)
- The emphasis will also shift towards search for NP in the various angular distributions !

The semitauonic program

25

1. Vertical extension of $R(D^*)$

- R(D*) measurement with Run2 data
- Extraction of internal quantities , most notably q² , search for NP effects using our high stats high purity sample
- Measure R(D^{**}^o(2420) per se and to constraint D^{**} feeddown

2. Horizontal extension of R(D*)

 $\circ \quad \mathbf{R}(\Lambda_{c})$

R(J/ψ) under Chinese responsability Prof. Jibo He (UCAS) R(D⁺),R(D^o)

- \circ R(D_s)
- o V_{ub}

A whole new look to the charm decays into inclusive 3π

26

- LHCb physics program has now a major focus of tau decays to 3 pions, selecting detached 3π tertiary vertices. Background is almost entitrely charmed hadrons inclusively decaying into 3 pions.
- Hence, it is now critical to measure the inclusive decays of charmed hadrons into 3 pions

• Largest source is D_s meson

- Larger branching fraction for B to D*D_s (W hadronization)
- The D_s is an incredibly large source of inclusive 3p final states, although the exclusive decay mode D_s to 3π is only 1%
- ο Ds decays through light resonances (η, η',ω,φ,...) $\pi^{+/}\rho^+$
- But also with M3 π modes where M is π° ,K°, η , η' , ω , ϕ , $\nu\nu(\tau)$
- D+ decays : dominant modes $K^{\circ}3\pi(X)$
- D^o decays : dominant modes K⁻3π (X) –well constrained by inclusive 4-prong measurements

universitė

What is precisely needed

- Both for Ds and D+, we need a good « Decay model » fit that gives
 - The total inclusive rate of Ds to 3 pions (excluding K° parents). This will allow to constraint the total Ds background since we measure the Ds control peak in 3π. Can be given either as an absolute BR or a ratio wrt the exclusive measurement
 - The detailed sharing of the 3π channels between the 15 potential decay channels
 - × ηπ,ηρ,η'π,η'ρ,ωπ,ωπ, ϕ π, ϕ ρ \rightarrow **BES-III tagged direct reco.**
 - × M3 π where M is ($\pi^{\circ}, \eta, \eta', K^{\circ}, \omega, \phi$) \rightarrow BESIII recoil analysis
 - × τν; τ**→**3π
 - This input is **critical** for the complete R(X) program of LHCb
 - The same analysis is **also needed for the D**⁺ **meson**

Very Good news : this program is ongoing !!!

28

- My first visit to China in March 2017, thanks to a very effective Chinese Academy of Sciences grant, allowed several initial contacts on that theme
- Second visit to China in October 2017, thanks to a kind invitation to the Chine Heavy Favour workshop in Wuhan : very productive discussion and contacts there → See next talk ☺
- Some discussion also took place with the Ferrara BES-III group : agreement in principle to study one of the two channels , starting Spring 2018 (to be confirmed)
- Third visit to China today : the work is already well advanced

Conclusion

29

- It will not be possible to benefit from the tantalizing statistical precision of upcoming round of semitauonic measurements (LHCb, BELLE-II) without dedicated efforts on complementary measurements
- I like to view this as a HEP-wide common effort to come to a final answer on the semitauonic NP hints
- Hottest topics on the list :
 - $\,\circ\,$ Inclusive D_s and D+ decays to 3 pions (BES data)
 - Two- and Three-body Double charm events (BABAR and BELLE data)
- Such a collaborative effort can work !!!

