Leptonic and semileptonic D decays

Status and prospects at **BESIII**

Hailong Ma (IHEP&BESIII)

Joint BESIII-LHCb workshop in 2018 Feb. 8-9 2018, IHEP, Beijing

Main physics goals

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2} \qquad \frac{d\Gamma}{dq^{2}} = X \frac{G_{F}^{2} |V_{cd(s)}|^{2}}{24\pi^{3}} p^{3} |f_{+}(q^{2})|^{2}$$

1. $f_{D(s)+}$, $f^{K(\pi)}_{+}(0)$: better calibrate LQCD 2. $|V_{cs(d)}|$: better test on CKM matrix unitarity 3. Test on lepton flavor universality (LFU)

4. Search for new semileptonic decays

 $\boldsymbol{U} = \begin{bmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{bmatrix}$

Samples of D⁰⁽⁺⁾ and D_s⁺ at BESIII

$$\overline{\varepsilon}_{\rm sig} = \sum_{i=1}^{N} (N_{\rm ST}^{i} \times \varepsilon_{\rm ST\,vs.sig}^{i} / \varepsilon_{\rm ST}^{i}) / \sum_{i=1}^{N} N_{\rm ST}^{i}$$

3

Single tag D⁰⁽⁺⁾ at BESIII

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0$

$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$

6 largest tag modes give 1.5 M D⁻ tags

3 largest tag modes give 2.3 M D⁰ tags

Charge conjugations are included

Single tag D_s⁺ at BESIII

$e^+e^- \rightarrow D_s^+ D_s^- @4.009 \text{ GeV}$

$e^+e^- \rightarrow D_s^{*+}D_s^- + c.c.@4.178 \text{ GeV}$

0.39 M ST D_s⁻ mesons

Measurement of $D^+ \rightarrow I^+ v$

2.93 fb⁻¹ data@3.773 GeV

818 pb⁻¹ at ψ(3770) (2004–2008)

PRD78(2008)052003

PRD89(2014)051104R

 $B_{D+ \rightarrow \mu+\nu} = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$

 $f_{D+}=205.8\pm7.5\pm2.5$ MeV

 $B_{D+ \rightarrow \mu+\nu} = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$ $f_{D+} = (203.2 \pm 5.3 \pm 1.8) \text{ MeV}$ $|V_{cd}| = 0.2210 \pm 0.0058 \pm 0.0047$ BESIII result has been re-calculated with the latest LQCD calculation

20 fb⁻¹ data help to reduce the uncertainty of f_{D_+} to 1%

Search for $D^+ \rightarrow \tau^+ v$

Fitting to DATA

$$R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} = \frac{m_{\tau^+}^2 \left(1 - \frac{m_{\tau^+}^2}{M_{D^+}^2}\right)^2}{m_{\mu^+}^2 \left(1 - \frac{m_{\mu^+}^2}{M_{D^+}^2}\right)^2}$$

SM prediction: 2.66

BESIII: 3.21±0.64

11

Previous measurements of $D_s^+ \rightarrow l^+ v$

In the past 30 years, $D_s^+ \rightarrow I^+ v$ has been studied by WA75, CLEOII, E653, BESI, L3, OPAL, ALPHA, CLEO-c, BELLE, Babar

f_{Ds+}=257.8±13.3±5.2 MeV

Belle, 913 fb⁻¹ at
 10.58 GeV [2698 l⁺v]

 $e^+e^- \rightarrow DKXD_s^{*-}$

f_{Ds+}=255.5±4.2±5.1 MeV

Babar, 521 fb⁻¹ at 10.58 GeV [1023 l⁺v]

$$e^+e^- \rightarrow DKXD_s^{*-}$$

Measurement of $D_s^+ \rightarrow l^+ v$

3.19 fb⁻¹ data

@4.178 GeV

0.482 fb⁻¹ data @4.009 GeV

PRD94(2016)072004

PRD90(2014)074509 LQCD 249.0±0.3±1.5 CLEO $\tau^+ (e^+ v_{\rho} \nabla_{\tau}) v_{\tau}$ 252.8+11.2+5.5 CLEO $\tau^+(\rho^+\overline{\nu}_\tau)\nu_\tau$ 258.0±13.3±5.2 CLEO 278.3±17.6±4.4 $\tau^+(\pi^+\overline{\nu}_\tau)\nu_\tau$ BABR $\tau^+(e^+\nu_e\nabla_{\tau},\mu^+\nu_u\nabla_{\tau})\nu_{\tau}$ 244.6+9.1+14.2 $\tau^{+}(e^{+}v_{e}\nabla_{\tau},\mu^{+}v_{\mu}\nabla_{\tau},\pi^{+}\nabla_{\tau})v_{\tau} = 262.2\pm4.8\pm7.4$ BELL BESIII@4.009 $\mu^+ v_{\mu}, \tau^+ (\pi^+ \nabla_{\tau}) v_{\tau}$ 241.0±16.3±6.6 CLEO μ⁺ν,, 257.6±10.3±4.3 μ*ν,,, BABR 265.9+8.4+7.7 BELL μ*ν... 249.8±6.6±5.0 BESIII@4.178 _{u*v.} 249.1+3.6+3.8 BESIII@4.178 249.1±2.6±3.8 6 fb⁻¹ Expected 200 250 -50 50 150 300 100 f_{D_a} (MeV)

Uncertainty of f_{Ds+} with $\mu/\tau v$ is expected to reach 1.5% with 3.19 fb⁻¹ data

f_{Ds+}=(241.0±16.3±6.6) MeV

 $f_{Ds}|V_{cs}|=242.5\pm3.5\pm3.7$ MeV

Previous measurements of D \rightarrow K(\pi)I^+v

In the past 30 years, studies of $D \rightarrow K(\pi)I^+\nu$ were made by MARKIII, E691, CLEO, CLEOII, BESII, FOCUS, BELLE, Babar and CLEO-c

BELLE, 282 fb⁻¹ at 10.58 GeV

Babar, 75 fb⁻¹ at 10.58 GeV

Babar, 347.2 fb⁻¹ at 10.58 GeV

Before 2010, the LQCD calculated $f_{-}^{D \rightarrow K(\pi)}(0)$ precision is at 10% level, thus limiting $|V_{cs(d)}|$ measurement 10

Progress in LQCD calculations

Taking from Aida X. El-Khadra's talk at Beauty2014

errors (in %) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014

Analysis of $D^0 \rightarrow K(\pi)^-e^+v$

PRD92(2015)072012

Analysis of $D^+ \rightarrow K_L e^+ v$

PRD92(2015)112008

Simultaneous fit to event

density I(q²) with 2-par.

series Form Factor

$\overline{B}(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$

 $A_{CP}^{D+ \rightarrow KLe+v} = (-0.59 \pm 0.60 \pm 1.50)\%$

$D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} tag$ Events / (0.018 GeV²/c⁴) $\rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{0} tag$ $\rightarrow K_s^0 \pi^{\pm} \pi^0$ tag Events / (0.018 GeV²/c⁴) Events / (0.018 GeV²/*c*⁴) 200 $q^2 (\text{GeV}^2/c^4)$ q^2 (GeV²/ c^4) $q^2 (GeV^2/c^4)$ $\rightarrow \mathsf{K}^{\mathbf{0}}_{\mathbf{S}} \pi^{\pm} \pi^{\pm} \pi^{\mp} \mathbf{tag}^{\dagger}$ $\rightarrow K_s^0 \pi^{\pm} tag$ Events / (0.018 GeV²/c⁴) Events / (0.018 GeV²/c⁴) → K⁺ K[−] π[±] tag Events / (0.018 GeV²/c⁴) $q^2 (\text{GeV}^2/c^4)$ $q^2 (GeV^2/c^4)$ $q^2 (\text{GeV}^2/c^4)$

D⁺→K_Le+v is measured for the first time

 $f^{K}_{+}(0)|V_{cs}|=\!0.728{\pm}0.006{\pm}0.011$

Analysis of $D^+ \rightarrow \overline{K}(\pi)^0 e^+ v$

PRD96(2017)012002

 $B[D^+ \to \overline{K}^0 e^+ v] = (8.604 \pm 0.056 \pm 0.151)\%$

$$I_K \equiv \frac{\Gamma(D^0 \to K^- e^+ \nu_e)}{\Gamma(D^+ \to \bar{K}^0 e^+ \nu_e)} = 1.03 \pm 0.01 \pm 0.02$$

 $B[D^+ \to \pi^0 e^+ v] = (3.631 \pm 0.075 \pm 0.051) \times 10^{-3}$

$$I_{\pi} \equiv \frac{\Gamma(D^0 \to \pi^- e^+ \nu_e)}{2\Gamma(D^+ \to \pi^0 e^+ \nu_e)} = 1.03 \pm 0.03 \pm 0.02$$

14

Comparisons of $f^{D \rightarrow K(\pi)}_+(0)$

0.8

Measurements of |V_{cs(d)}|

Test of LFU in $D^{0(+)} \rightarrow \pi I^+ v$ decays

Evidence of LFV at 2.6 σ in FCNC decays B+ \rightarrow K+ μ + μ -/K+e+e-

$$R_{\rm LU}^{0(+)} = \frac{B(D^{0(+)} \to \pi^{-(0)} \mu^+ \nu)}{B(D^{0(+)} \to \pi^{-(0)} e^+ \nu)} \sim 0.97$$

BPDG16:
$$R_{LU}^0 = 0.82 \pm 0.08 \ (\sim 2.0\sigma)$$

 $B(D^0 \rightarrow \pi^- \mu^+ \nu) = (0.237 \pm 0.024)\%$

 $B[D^{0} \rightarrow \pi^{-} \mu^{+} v] = (0.267 \pm 0.007 \pm 0.007)\%$ $B[D^{+} \rightarrow \pi^{0} \mu^{+} v] = (0.342 \pm 0.011 \pm 0.010)\%$

 $R_{LU}^0 = 0.918 \pm 0.036$

 $R_{LU}^+=0.921\pm0.045$

Observation of D→Se+v

Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system.

With chiral unitarity approach in the coupled channels, BF is predicted to be order of 5(6)×10⁻⁵ for D⁰⁽⁺⁾ decays

 3.0σ

 Improve understanding of classification of light scalar mesons

$$R \equiv \frac{B(D^+ \to f_0 l^+ \nu) + B(D^+ \to \sigma l^+ \nu)}{B(D^+ \to a_0 l^+ \nu)}$$

R=1(3) if traditional qq (tetra quark) system

• $B(D^0 \to a_0(980)^- e^+ v_e) \times B(a_0(980)^- \to \eta \pi^-)$ = $(1.12^{+0.31}_{-0.28}(stat) \pm 0.10(syst)) \times 10^{-4}$ • $B(D^+ \to a_0(980)^0 e^+ v_e) \times B(a_0(980)^0 \to \eta \pi^0)$ = $(1.47^{+0.73}_{-0.59}(stat) \pm 0.14(syst)) \times 10^{-4}$

18

Form factors of D→Ve+v

•
$$m^2 = (p_{\pi^+} + p_{K^-})^2$$

• $\cos(\theta_K) = \frac{\hat{\nu} \cdot K_{K^-}}{|K_{K^-}|}$

• $\cos(\chi) = \hat{c} \cdot \hat{d}$

•
$$q^2 = (p_{e^+} + p_{\nu_e})^2$$

• $\cos(\theta_e) = -\frac{\hat{\nu} \cdot K_{e^+}}{|K_{e^+}|}$
• $\sin(\chi) = (\hat{c} \times \hat{\nu}) \cdot \hat{d}$

Decay rate depend on 5 variables and 3 form factors

$$d^{5}\Gamma = \frac{G_{F}^{2}|V_{cs}|^{2}}{(4\pi)^{6}m_{D}^{2}}X\beta\mathcal{I}(m^{2},q^{2},\theta_{K},\theta_{e},\chi)dm^{2}dq^{2}d\cos(\theta_{K})d\cos(\theta_{e})d\chi$$

- $X = p_{K\pi} m_D$, $p_{K\pi}$ is the momentum of the $K\pi$ system in the D rest frame
- $\beta = 2p^*/m$, p^* is the breakup momentum of the $K\pi$ system in its rest frame
- \mathcal{I} can be expressed in terms of helicity amplitudes $H_{0,\pm}$: $H_0(q^2) = \frac{1}{2m_q} \left[(m_D^2 - m^2 - q^2)(m_D + m)A_1(q^2) - 4 \frac{m_D^2 p_{K\pi}^2}{m_D + m} A_2(q^2) \right]$ $H_{\pm}(q^2) = (m_D + m)A_1(q^2) \mp \frac{2m_D p_{K\pi}}{m_D + m} V(q^2)$
- Vector form factor: $V(q^2) = \frac{V(0)}{1 q^2/m_V^2}$; or: FF ratio $r_V = V(0)/A_1(0)$
- Axial-vector form factor: $A_1(q^2) = \frac{A_1(0)}{1-q^2/m_A^2}$, $A_2(q^2) = \frac{A_2(0)}{1-q^2/m_A^2}$; or: FF ratio $r_2 = A_2(0)/A_1(0)$

PWA of D⁺ \rightarrow K⁻ π ⁺e⁺v

PRD94(2016)032001

Fractions with >5σ significance

 $f(D^+ \to (K^-\pi^+)_{K^{*0}(892)} e^+\nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$ $f(D^+ \to (K^-\pi^+)_{S-wave} e^+\nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

Properties of different Kπ (non-) resonant amplitudes

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^{2}$$

$$\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^{2}$$

$$r_{BW} = (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1}$$

• q² dependent form factors in D⁺ $\rightarrow \overline{K}^{*0}(892)e^{+v}$

Model independent S-wave phase measurement

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}, \quad A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2}$$

 $M_{V/A}$ is expected to $M_{D^*(1-/+)}$

 $m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2$ $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$ $A_1 (0) = 0.573 \pm 0.011 \pm 0.020$ $r_V = V(0)/A_1 (0) = 1.411 \pm 0.058 \pm 0.007$ $r_2 = A_2(0)/A_1 (0) = 0.788 \pm 0.042 \pm 0.008$

Model independent form factors

Study of $D^+ \rightarrow \omega e^+ v$ and search for $D^+ \rightarrow \phi e^+ v$

PRD92(2015)071101(RC)

 $B[D^+ \rightarrow \phi e^+ v] < 1.3 \times 10^{-5} \text{ at } 90\% \text{ C.L.}$

Better precision or sensitivity

(b)

2 3

χ

Amplitude analysis of $D^+ \rightarrow \omega e^+ v$ is performed for the first time

 $r_{V} = V(0)/A_{1}(0) = 1.24 \pm 0.09 \pm 0.06$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

Studies of $D_s^+ \rightarrow K^{(*)0}e^+v$ at 4.178 GeV

Four dimensional un-binned likelihood fit is performed. K* paramters are fixed

 $r_{\rm V}$ =1.67±0.34±0.16 r₂=0.77±0.28±0.07

GeV⁻²c⁴

Model	Parameter	Value	$f_{+}(0)$
Simple pole	$f_{+}(0) V_{cd} $	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_{+}(0) V_{cd} $	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
	α	$0.45 \pm 0.44 \pm 0.02$	
Series two parameters	$f_{+}(0) V_{cd} $	$0.162 \pm 0.019 \pm 0.003$	$0.720 \pm 0.084 \pm 0.013$
	<i>r</i> ₁	$-2.94 \pm 2.32 \pm 0.14$	

Summary

• With ~3/3 fb⁻¹ data taken at 3.773/4.178 GeV by BESIII, the leptonic decay of $D_{(s)}^+ \rightarrow I^+v$ and some semi-leptonic D decays, and improved measurements of $|V_{cs(d)}|$, decay constants, form factors have been obtained

- More results are expected in the near future
 - $D_s^+ \rightarrow \tau^+ v$, f_{Ds+} and $|V_{cs}|$
 - $D_s^+ \rightarrow \eta^{(')}e^+v$, form factors and $|V_{cs}|$
 - $D_s^+ \rightarrow K^+ K^- / \pi^+ \pi^- e^+ v$, form factors
 - $D^0 \rightarrow K^- \mu^+ v$, $f^+_K(q^2)$ and $|V_{cs}|$
 - $D \rightarrow K_1(1270)e^+v$
 - $\mathbf{D}_{(s)}^{0(+)} \rightarrow \mathbf{X} \mathbf{e}^+ \mathbf{v}$

All Cabibbo-suppressed $D^{0(+)}$ decays and D_s^+ decays are restricted by the limited data

Prospects at BESIII

With 20/6 fb⁻¹ data taken at 3.773/4.178 GeV, some elementary constants can be further improved

	Systematic error	Statistical error	
		~3 fb⁻¹	Expected with 20/6 fb ⁻¹
$\Delta f_{D+}/f_{D+}$	0.9%	2.6%	0.5%
∆f _{Ds+} /f _{Ds+}	1.5%	1.5%	~1% 🔸
∆f _{D→K} /f _{D→K}	0.5%	0.4%	0.15%
$\Delta f_{D \to \pi} / f_{D \to \pi}$	0.7%	1.3%	0.5%
V _{cs} ^{Ds+→I+v}	1.5%	1.5%	~1%
V _{cs} ^{D0→K-e+v}	2.5% <mark>(2.4%^{LQCD})</mark>	0.4%	0.15% 🔸
V _{cd} ^{D+→μ+ν}	0.9%	2.6%	~1%
V _{cd} ^{D0→π-e+v}	4.5% <mark>(4.4%^{LQCD})</mark>	1.3%	0.5%

Only $D_s^+ \rightarrow \mu^+ v$ is considered. The contribution of $D_s^+ \rightarrow \tau^+ v$ will be comparable or slightly better than $D_s^+ \rightarrow \mu^+ v$

Once LQCD uncertainties reach <1% level, the |V_{cs(d)}| will be much improved

More or improved measurements of form factors of semileptonic decays, containing scalar or axial-vector meson, which are now statistically limited
24

Thank you!

BEPCII collider

Satellite view of BEPCII /BESIII

South

BESIII detector Beam energy: Optimum energy: Designed luminosity: Data taken from: Achieved luminosity:

LINAC

1.0-2.3 GeV 1.89 GeV 1.00×10³³ cm⁻²s⁻¹ 2009 1.00×10³³ cm⁻²s⁻¹

BESIII detector

Improved BF for $D^+ \rightarrow \overline{K}^0 \mu^+ v$

Taking B[D⁰ \rightarrow K[·] μ ⁺v] and B[D⁺ \rightarrow K⁰e⁺v] from the PDG as input

$$\frac{\Gamma[D^0 \to K^- \mu^+ \nu]}{\overline{\Gamma}[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044$$
$$\frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033$$

Support isospin conservation in these two decays within errors

Consistent with theory prediction 0.97 within error ²⁸

Absolute BF for $D^+ \rightarrow \overline{K}^0 e^+ v$ via $\overline{K}^0 \rightarrow \pi^0 \pi^0$

Taking τ_{D^+} , τ_{D0} , $B[D^0 \rightarrow K^-e^+v]$ and $B[D^+ \rightarrow \overline{K}^0e^+v]$ from the PDG as input

 $\frac{\Gamma[D^0 \to K^- e^+ v]}{\overline{\Gamma}[D^+ \to \overline{K}^0 e^+ v]} = 0.969 \pm 0.025$

Agrees with isospin conservation within 1.2σ

Measurements of BFs of $D_s^+ \rightarrow \eta^{(')}e^+v$

Benefit the understanding of the source of difference of inclusive decay rates of D⁰⁽⁺⁾ and D_s⁺

Complementary information to understand η-η' mixing

482 pb⁻¹ data@4.009 GeV, PRD94(2016)112003

Measurements of BFs of $D_s^+ \rightarrow \phi/\eta^{()}\mu^+ v$

482 pb⁻¹ data@4.009 GeV, PRD97(2018)012006

μ^+ mode	$\mathcal{B}_{\text{BESIII}}$ (%)	\mathcal{B}_{PDG} (%)	e^+ mode	$\mathcal{B}_{\mathrm{BESIII}}$ (%)	\mathcal{B}_{PDG} (%)
$D_s^+ \to \phi \mu^+ \nu_\mu$	$1.94 \pm 0.53 \pm 0.09$		$D_s^+ \rightarrow \phi e^+ \nu_e$	$2.26 \pm 0.45 \pm 0.09$	2.39 ± 0.23
$D_s^+ \rightarrow \eta \mu^+ \nu_\mu$	$2.42 \pm 0.46 \pm 0.11$		$D_s^+ \rightarrow \eta e^+ \nu_e$	$2.30 \pm 0.31 \pm 0.08$ [8]	2.28 ± 0.24
$D_s^+ ightarrow \eta' \mu^+ \nu_\mu$	$1.06 \pm 0.54 \pm 0.07$		$D_s^+ \to \eta' e^+ \nu_e$	$0.93 \pm 0.30 \pm 0.05$ [8]	0.68 ± 0.16

BFs of semi-muonic decays are measured for the first time