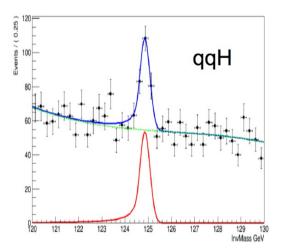
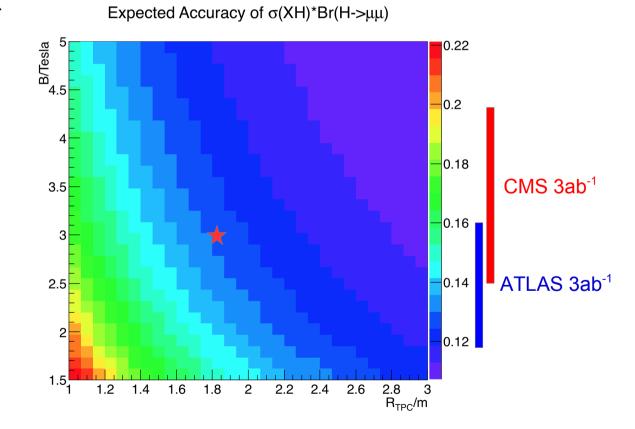
Si-Tracking: boundaries & software

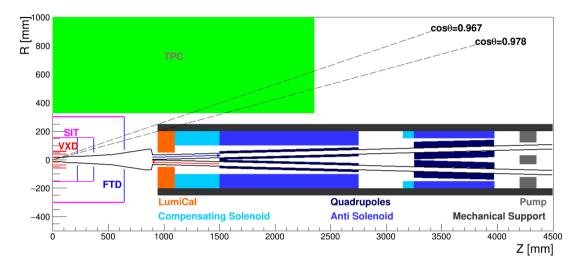

🐘 Chengdong Fu & Manqi Ruan


Boundaries

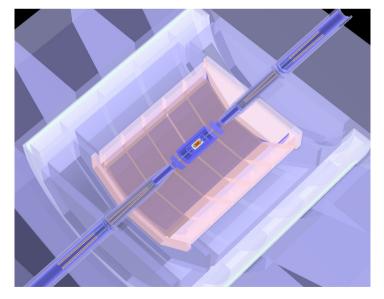
- From Physics Requirement at H->di muon:
 - $Delta(1/Pt) \sim 2E-5$ is a must, which means
 - the TPC radius > 1.8 meter
 - Silicon design to Xcheck the performance
- Geometry
 - Modification of Forward region: Marginal impact on Silicon Tracking
 - B Field reduced to 3 Tesla

Tracker Radius: the optimized value

- Detector cost is sensitive to tracker radius, however, I recommend TPC radius >= 1.8m:
 - Better separation & JER
 - Better dEdx
 - Better (H->di muon) measurement


Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC


	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	_
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

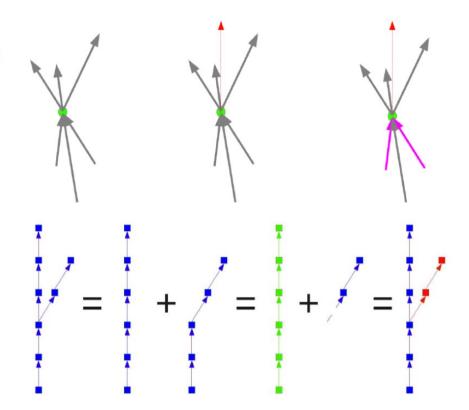
CEPC Forward Region

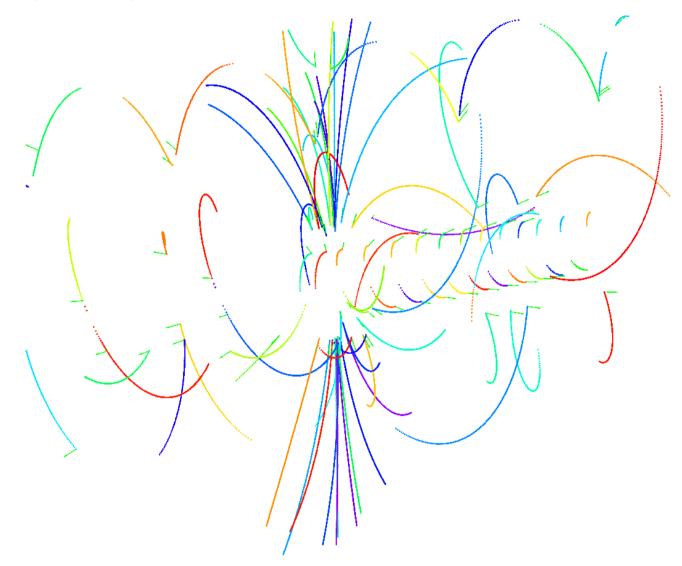
MDI parameters	old	new
<i>L</i> * (m)	1.5	2.2
Crossing angle (mrad)	30	33
Strength of QD0 (T/m)	200	150
Strength of detector solenoid (T)	3.5	3.0
Strength of anti-solenoid (T)	13	7.0

- Physics Requirements
 - Adequate to CEPC collision environments & Works coherently with all sub-systems
 - 1.0E-3 relative accuracy at the Higgs;
 - 1.0E-4 relative accuracy at the Z pole;
 - Provide on-situ information for Beam Energy/Luminosity monitoring...

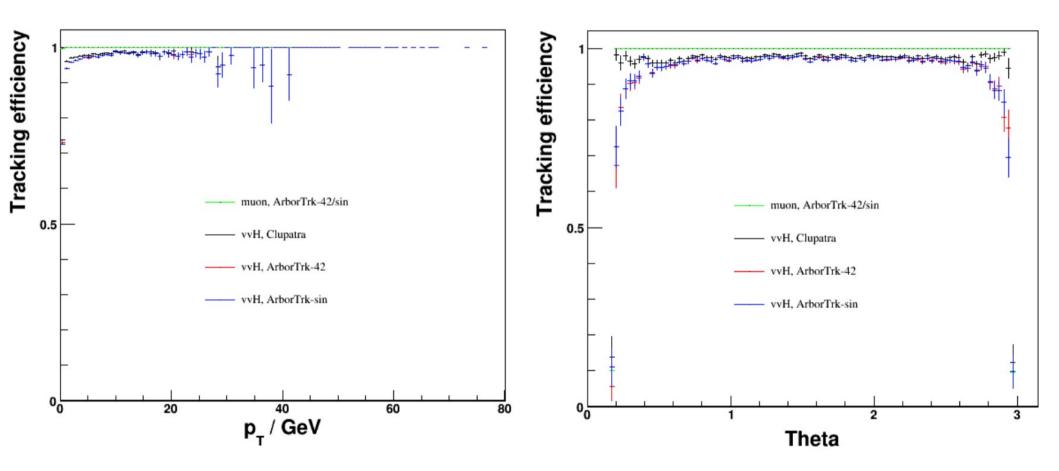
Software

- Si Tracker Geometry optimized at fast simulation level & Implemented to full simulation
- Digitization study framework set no validation
- Arbor based Track finding is under development
 - Comparable result at TPC
 - Cleaning & Validation, Maybe applicable to Silicon Tracking


Arbor


- Arbor link any two closed (distance smaller than threshold) hits by connector (orientated arrow) first
- Clean connectors of hits⇒tree
 - One connector for each hit

• Separate tree⇒branch


The branch composed by hits in TPC will just be candidate track.

DRUID, RunNum = 0, EventNum = 1

Finding efficiency

Open questions

- Remark: To be partly addressed in CDR... but more for future studies
- Adaptation to the CEPC environment
 - Power Budget & Consumption
 - Cooling & Material budget
 - Required accuracy & methodology for Alignments & Stability
 - Radiation Hardness
 - Time responses: Hit rates & Integration times
- Physics benchmarks...
 - H->di muon
 - JER @ vvH, H->gg

Open questions

- Pro & Con with respect to TPC (alternative)
 - Pro:
 - Stable, Widely used,
 - maybe able to on-site monitoring of B-Fields
 - Con:
 - No, or limited dEdx;
 - Potentially limited performance for low momentum tracks. limits
 - Tau performance (Br(tau->3 prong)) at Z pole?
 - Jet resolution
 - Unclear: Materials & Impacts to other benchmarks
- Candidate technology and comparison: CMOS, SoI, 3D, HV-CMOS? ...

To do

- Properly summarize what had already been understood
- Software
 - Combine the Silicon Tracker & CEPC_v4 Geometry together... into a CEPC_v4_Si_Tracking scenario
 - Test/Develop the tracking reconstruction algorithms
 - Applied to possible physics benchmarks
- Constrain: limited man power.