

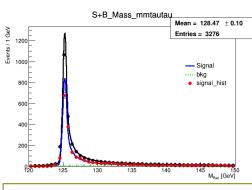
CEPC Higgs Combination

ZhangKaili* WangJin LiuZhen

Fit model introduction

- Uniformed, simultaneous fit framework
 - Extensibility for correlations/NPs/assumptions......
- Use individual analysis's spectrum
 - Make and fit Asimov Data
 - Get estimated precision of $\sigma * Br$ and Higgs coupling κ
- Fit algo: minuit2+minos,
 - Profile likelihood scan, under tuning;
 - Show asymmetric errors

Channels Table (now 43)


Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab⁻¹.

Signal		Observed	Who takes	Last update	Signal		Observed	Who takes	Last undata
Z	Н	Events	charge	Last update	Z	Н	Events	charge	Last update
		H->Inclusive					vvH(WW fusion)		
VV	Inclusive	164170			vv	bb	10256	LiangHao	2017.8
μμ	Inclusive	29552	Libo	2017.8			H->WW		
ee	Inclusive	22200				μνμν	52		
H->qq				evev	36				
	bb	7655		2017.7	μμ	evμv	105	Libo	2017.4
ee	СС	351				evqq	663		
	gg	1058				μναα	717		
μμ	bb	11108	Baiyu	2017.9	ee	μνμν	44		
	СС	567				evev	22		
	gg	1762				evμv	81		
qq	bb	176542		2017.7		evqq	612		
	СС	8272				μναα	684		
	gg	25293			vv	qqqq	9022		
	bb	70608					H->ZZ		
VV	СС	3061			VV	μμϳϳ	190	Yuqian	2016.9
	gg	9633			μμ	vvjj	200		
Η→γγ,Ζγ			ee	vvjj	69				
II		93	Feng	2015			H→II		
VV	γγ	309	reng	2013	μμ		2068		
qq		822	Yitian	2017.4	qq	ττ	36023	Dan	2017.9
qq	Ζγ	219	Weimin	2017.9	VV		12456		
H->Invisible			qq		71				
qq		202			ee	μμ	1	Zhenwei	2017.8
ee	VVVV	8	MoXin	2017.7	μμ		4		
μμ		18			vv		14		

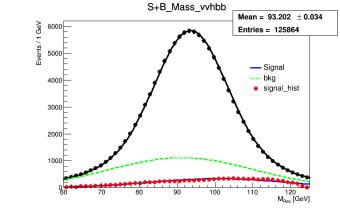
Treatment for ZH bkg

- In individual analysis
 - other ZH process is tagged as bkg, which is other channel's signal.
- Combination can correctly deal with them
 - ZZ process events in WW channel will also contribute to κ_z ;
- Exclusive ZH bkg is needed;
 - Must specify which ZH process is;
 - Preparing

In μμττ channel, ZH bkg(main WW) share the same shape as signal.

κ Framework

 κ defined as the ratio of the Higgs coupling to SM expects.


$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$$

LHC, ILC use 7 & 10 kappa franework as benchmark;

In CEPC

- For Production, ZH & WW fusion process, κ_Z^2 ; κ_W^2 ;
- For Partial decay, no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 ,
- For Total width Γ_H . $\Gamma_H = \Gamma_{SM} + \Gamma_{BSM}$. If we assume no exotic decay,
- Γ_{SM} can be resolved as $0.216\kappa_W^2 + 0.0267\kappa_Z^2 + 0.578\kappa_b^2 + 0.086\kappa_g^2 + 0.0023\kappa_\gamma^2 + 0.0637\kappa_\tau^2 + 0.0268\kappa_c^2 \dots$
- In pre CDR, finished by Liu Zhen;
 - Use CrossX result as input; and fit by MMA;
 - Now this result can be a crosscheck with Zhen's.

Correlations: vvh->bb channel

- WW fusion channel contains many ZH bkg;
- Initial error is 2.89%, but must consider the uncertainty of ZH process(~0.4%)
- LiangHao assumes the error is Gaussian distribution;

•
$$-\text{Log}L = 0.5 \left(\frac{\mu_{ZH}-1}{0.375\%}\right)^2 - P\left(data | \mu_{ZH}N_{ZH}Pdf_{ZH} + \mu_{wwf}N_{wwf}Pdf_{wwf} + N_{SM}Pdf_{SM}\right)$$
 (May be optimisitic?)

• In combination, we can directly use the likelihood in Z->ee/mm/qq, H->bb channel;

• Combine Fit is $\begin{cases} +3.13\% \\ -3.14\% \end{cases}$; consistent with Hao's 3.1%

$\Delta(Br * \sigma)$ fit Result

	PreCDR	Current
$\sigma(ZH)$	0.51%	0.50%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	$\{^{+0.27\%}_{-0.27\%}$
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	{+3.45% -3.43%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	$\{^{+1.43\%}_{-1.42\%}$
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	$\{^{+1.20\%}_{-1.20\%}$
$\sigma(ZH) * Br(H \to ZZ)$	4.3%	{+5.91% -5.74%
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	$\{^{+0.68\%}_{-0.67\%}$
$\sigma(ZH) * Br(H \to \gamma \gamma)$	9.0%	{+8.26% -8.17%
$\sigma(ZH) * Br(H \to \mu\mu)$	17%	{+15.8% -14.9%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	$\{^{+3.13\%}_{-3.14\%}$
$Br(H \rightarrow inv.)$	0.28%	0.18%
$\sigma(ZH) * Br(H \to Z\gamma)$	\	$4\sigma(\{^{+15.4\%}_{-14.9\%})$

Results to compare

7 κ	Minos Result	Liu_Zhen Current	Pre_CDR
κ_b	{+1.34% -1.33%	{+1.33% -1.37%	1.2%
$\kappa_{ m c}$	$\left\{ ^{+2.23\%}_{-2.21\%} \right.$	{+2.22% -2.24%	1.6%
$\kappa_{ m g}$	{+1.57% -1.55%	{+1.55% -1.58%	1.5%
κ_{γ}	{+4.31% -4.39%	$\left\{ ^{+4.25\%}_{-4.41\%} \right.$	4.7%
κ_{μ} = $\kappa_{ au}$	{+1.40% -1.38%	{+1.37% -1.41%	1.3%
$\kappa_{ m Z}$	$\{^{+0.14\%}_{-0.14\%}$	$\left\{ ^{+0.14\%}_{-0.16\%} \right.$	0.16%
κ_{W}	{+1.38% -1.36%	{+1.34% -1.37%	1.2%

Difference in 0.01%.

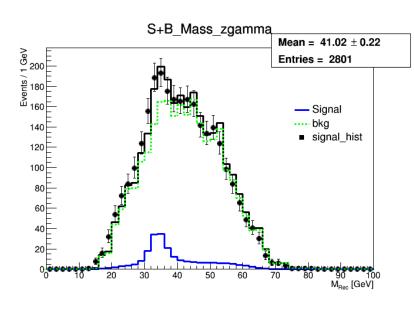
with/without ZH bkg

	with ZH bkg	without ZH bkg
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	$\{^{+0.27\%}_{-0.27\%}$	{+0.27% -0.27%
$\sigma(ZH) * Br(H \to cc)$	{+3.45% -3.43%	{+3.45% -3.43%
$\sigma(ZH) * Br(H \to gg)$	$\{^{+1.43\%}_{-1.42\%}$	$\{^{+1.42\%}_{-1.42\%}$
$\sigma(ZH) * Br(H \to WW)$	$\left\{egin{array}{l} +1.20\% \ -1.20\% \end{array} ight.$	{+1.44% -1.43%
$\sigma(ZH) * Br(H \to ZZ)$	{+5.91% -5.74%	$\{^{+6.00\%}_{-5.82\%}$
$\sigma(ZH) * Br(H \to \tau\tau)$	$\{^{+0.68\%}_{-0.67\%}$	$\{^{+0.67\%}_{-0.67\%}$
$\sigma(ZH) * Br(H \to \gamma \gamma)$	$\{ {}^{\mathbf{+8.26\%}}_{\mathbf{-8.17\%}}$	$\{^{+8.27\%}_{-8.18\%}$
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	$\{^{+15.8\%}_{-14.9\%}$	$\{^{+15.8\%}_{-14.9\%}$
$\sigma(vvH) * Br(H \rightarrow bb)$	$\left\{ egin{array}{l} +3.12\% \ -3.06\% \end{array} ight.$	$\{^{+3.12\%}_{-3.06\%}$
$Br(H \rightarrow inv.)$	0.18%	0.18%
$\sigma(ZH) * Br(H \to Z\gamma)$	4σ	4σ

7 κ	with ZH	without ZH bkg
κ_b	{+1.34% -1.33%	{+1.36% -1.34%
$\kappa_{ m c}$	{+2.23% -2.21%	$\{^{+2.23\%}_{-2.21\%}$
κ_{g}	{+1.57% -1.55%	{+1.57% -1.55%
κ_{γ}	{+4.31% -4.39%	$\{^{+4.32\%}_{-4.40\%}$
κ_{μ} = $\kappa_{ au}$	{+1.40% -1.38%	{+1.40% -1.38%
$\kappa_{ m Z}$	$\left\{ ^{+0.14\%}_{-0.14\%} \right.$	$\{^{+0.16\%}_{-0.16\%}$
$\kappa_{ m W}$	{+1.38% -1.36%	{+1.38% -1.37%

Now ZH bkg incomplete; (Main in bb/cc/gg channel, and affect ZZ/WW/tautau) It can make some difference to the final fit.

To dos


- Likelihood Scan & Contour plot;
- Import Nuisance parameter;
- CDR & note writing

backup

Zgamma process

Weimin; binned fit $\begin{Bmatrix} +15.4\% \\ -14.9\% \end{Bmatrix}$