Top quark mass measurement near threshold at future CEPC

Wei-Guo Chen, Xia Wan, You-kai Wang

School of physics and Information Technology, Shaanxi Normal University

2017.09.20 Beijing

Wei-Guo Chen, Xia Wan, You-kai Wang (SchTop quark mass measurement near threshold

2017.09.20 Beijing 1 / 14

• Why we need precise top mass?

• Experimental measurement methods at $pp(p\bar{p})$ colliders

• $t\bar{t}$ threshold scan at future CEPC

Conclusion

The contour of top mass and Higgs mass.

The contour of top mass and Higgs mass.

G. Degrassi et al., JHEP 08, 098 (2012), arXiv:1205.6497.; S. Alekhin, A. Djouadi, and S. Moch, Phys. Lett. B716, 214 (2012).

How to determine the top mass?

- Kinematics reconstruction, lepton+jets, dilepton, full jets, single top etc..
- Comparing σ_{obs} to σ_{th} .

CMS PLB728, 496, (2013); D0

PLB703, 422, (2011);

Experimental measurement methods at $pp(p\bar{p})$ colliders

• Current top mass measurements:

Monte Carlo mass: Monte Carlo simulation input mass, $\Delta m = m_{MC} - m_{pole} \leq 1 \,\, {
m GeV}$

Theoretical sources: theoretical uncertainties? does top mass it-self exist uncertainties?

Ulrich Husemann, Progress in Particle and Nuclear Physics 95 (2017) 48-97

Short-distance top mass, potential subtracted(PS) mass

Recall:

The pole mass(long-distance) is defined at the pole of renormalized propagator:

$$=\frac{i}{\not p - m_R - \sum_R(\not p)}$$
$$\downarrow$$
$$\psi$$
$$p_{pole} = m_R + \sum_R(\not p_{pole})$$

where m_R is the renormalized short-distance mass. One-loop example:

$$\sum_{R}^{(1)}(m_{R}) = +...+ +...+ +...+$$
$$= m_{R} \sum_{n=0}^{\infty} c_{n} \alpha_{s}^{n+1}(m_{R}). \quad \text{Resulting}: \quad \delta m_{\text{pole}} \sim \Lambda_{\text{QCD}},$$

what this means?

Wei-Guo Chen, Xia Wan, You-kai Wang (SchTop quark mass measurement near threshold

• Potential Subtracted(PS) mass:

Defining
$$\delta m(\mu_f) = -\frac{1}{2} \delta V(r, \mu_f) = -\frac{1}{2} \int_{|\vec{q}| < \mu_f} \frac{d^3 \vec{q}}{(2\pi)^3} \tilde{V}(\vec{q})$$

 $\implies m_{PS}(\mu_f) = m_{pole} - \delta m(\mu_f),$

$$m_{PS}(\mu_f) = m_R\left(1 + \sum_{n=0}^{\infty} c_n \alpha_s^{n+1}(m_R)\right) - \mu_f \sum_{n=0}^{\infty} c'_n \alpha_s^{n+1}(m_R)$$

- Conspicuously, the coefficients c_n and c'_n have the same divergent form as $n \to \infty$ and cancel exactly!
- The remained finite terms are unambiguity!

• Setting
$$\mu_f = 0$$
, $m_{PS} = m_{pole}!$

Pole mass vs PS mass

Fig. 1 pole mass \rightarrow unstable peak location

Fig. 2 PS mass \rightarrow stable peak location

$t\bar{t}$ threshold scan at CEPC

Observed cross section

$$\sigma_{t\bar{t}}^{obs}(\sqrt{s}) = \int_0^\infty d\sqrt{s'} G(\sqrt{s'},\sqrt{s}) \cdot \int_0^1 dx \mathcal{F}(x,s') \sigma_{t\bar{t}}^{th}(\sqrt{s'}(1-x)),$$

 $\mathcal{F}(x, s')$: the initial state radiation(ISR) factor.

(E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985), [Yad. Fiz.41,733(1985)])

Input mapameters:

$$m_{PS}(\mu_f = 20 \text{ GeV}) = 171.5 \text{ GeV},$$

 $\alpha_s = 0.1185,$
 $\Gamma_t = 1.33 \text{ GeV}.$

Various corrected cross sections.

Wei-Guo Chen, Xia Wan, You-kai Wang (SchTop quark mass measurement near threshold

$t\bar{t}$ threshold scan at CEPC

•
$$\chi^2$$
 fitting:

$$\chi^{2} = \sum_{i=1}^{n} \frac{[N_{i} - \mu_{i}(m_{t})]^{2}}{\mu_{i}(m_{t0})},$$

 N_i : observed events, obtained by Poisson sampling with expectation $\mu_i(m_{t0})$.

$$\mu_{i} = [\epsilon_{sig} \cdot Br_{Wb} \cdot \sigma_{t\bar{t}}^{obs}(\sqrt{s_{i}}, m_{t}) + \sigma_{BG}] \cdot \mathscr{L}^{i}$$
$$\sim \mathscr{L}_{eff}^{i} \cdot Br_{Wb} \cdot \sigma_{t\bar{t}}^{obs}(\sqrt{s_{i}}, m_{t}),$$

 $\begin{array}{l} \mathscr{L}_{eff}^{i} = \mathscr{L}_{i} \cdot \epsilon_{sig} \text{: the effective luminosity for } i\text{th energy point,} \\ Br_{Wb} = 1. \\ \sigma_{BG} \text{: back grounds from } W^{+}W^{-}, \ ZZ, \ ZH \ \text{decays, etc.,} \\ \mid \mathsf{M}_{W,b} - \mathsf{m}_{t} \mid \leq \bigtriangleup \mathsf{M}_{t} \backsim 15 \text{ - } 35 \ \text{GeV, suppressed, negligible.} \end{array}$

$t\bar{t}$ threshold scan at CEPC

- The statistical uncertainty(Hesse error matrix in MINUIT)
- One energy point, data driven method

Relationship between the statistical error and luminosity.

Stat. error&first-order derivative

• Top PS mass extraction at CEPC:

$$\delta m_t^{stat.} \simeq 7 \text{ MeV} \quad (\mathscr{L}_{\text{eff}} = 50 \text{ fb}^{-1})$$

 $\delta m_t^{theory} = \delta \sigma(m_t, \sqrt{s}) \cdot [\frac{\partial \sigma(m_t, \sqrt{s})}{\partial m_t}]^{-1} \simeq 26 \text{ MeV}.$

NNNLO QCD:
$$\delta \sigma_{obs}^{theory} \sim 3\%$$
.

Converting into pole mass:

 m_t^{pole} = 173.294 \pm 0.03(theory+stat.+syst.) \pm $\mathcal{O}(0.2)$ GeV.

colliders	$\delta m_t^{\mathrm{stat.}}$ [MeV]
$CEPC^{N_p=1}_{\mathscr{L}_{eff}=50 fb^{-1}}$	7
$FCC-ee_{\mathscr{L}_{total}=100 fb^{-1}}^{N_p=10}$	15.5
$ILC_{\mathscr{L}_{total}=100 \textit{fb}^{-1}}^{N_p=10}$	18
$CLIC_{\mathscr{L}_{total}=100 \textit{fb}^{-1}}^{N_p=10}$	21

A summary of statistical uncertainties for various colliders, N_p refers to the numbers of fit energy points.

Martin Beneke, Phys. Rev. Lett. 115, 192001 (2015)

Conclusion

- PS mass is adopted.
- Experimental scheme at CEPC:
 - Threshold scan
 - One energy point scheme
 - Data driven method
- Top PS mass is extracted within $\mathcal{O}(30)$ MeV at future CEPC, $\mathscr{L}_{eff} = 50 \ fb^{-1}$.

Thank You!