

Status report on H-> μ^- + μ^+ at CEPC

Zhenwei Cui

2017/9/25

Correlation between BDT respond and invariant mass

Correlation Matrix (signal)

The correlation of background in ZqqHuu analysis is -12, the others are less than 10

ZqqHuu analysis

Inclusive analysis background

ZqqHuu analysis

		strength	significance	
ide and only	zqq_mva(2)	1.03	7.96	The
	zqq_mva(4)	1.00	7.73	hump is
	zqq_cut(2)	1.09	8.00	not
	zqq_cut(4)	1.09	7.87	obvious,
All rea	zqq_mva(2)	1.03	8.01	however
	zqq_mva(4)	1.04	8.04	a little
	zqq_cut(2)	1.10	8.12	hias exist
	zqq_cut(4)	1.10	8.00	DIGS CAISE

S

а

ZqqHuu analysis ("loosen cuts" compare)

Pt and recoil mass have larger correlation than other variables (over 15) . Finally I use PT(20,64) which the number of fake signal is 2.87.

However, other variables can also decrease fake signal.

Events / (0.25 Preselection $120 < M_{\mu^+\mu^-} < 130$ $M_{jet1} < 4.2$ $M_{jet2} < 2.8$ $M_{jet12} > 76.0$ $90.9 < M_{recoil_{\mu}} < 93.5$ $20 < P_{T_{\mu+\mu-}} < 62.3$ $-58 < P_{Z_{\mu+\mu-}} < 58$ All cut $cos\theta_{\mu^+} > -0.94$ PT $\cos\theta_{\mu^-} < 0.94$ Recoil efficiency mass

5.57

2.86

4.52

strength (R	ecoil mass(90,95)+Pz(-	-60,60)+P1	Г(20,64))	= 1
-------------	-------------	-------------	------------	-----------	-----

1. Select half of background samples randomly; 2. Add cuts to background; Find the number of fake signal.

-15

Half Background Check

