Recent progress on cryogenic front-end electronic for CDEX

Zhi Deng, Li He, Feng Liu, Yinong Liu, Yulan Li, Qian Yue

Tsinghua University

2018-06-22

2018 CHEP@ Shanghai

2018/6/23

Outline

- Introduction
- Progress on cryogenic readout electronics
 - Monolithic CMOS CSA
 - Waveform sampling ADC
- Summary

Introduction

CHINA

- CDEX: China Dark Matter Experiment
 - Direct detection of light dark matter particles with point-contact high purity germanium detectors with ultralow energy threshold
 - Conducted at CJPL, the world deepest underground laboratory
 - CDEX-1→CDEX-10→CDEX-100/200

CDEX-1 in 2014

Point-Contact HPGe Detector

 Large crystal with small-contact readout electrode and hence low capacitance, first developed by P.N. Luke @ LBL in 1980s

 Recently regain its interests for DM and neutrino experiments:

CoGeNT, CDEX, GERDA, MAJORANA

~1pF for 1kg crystal

- Requirements for the readout electronics
 - Low energy threshold \rightarrow Low noise
 - Low background \rightarrow low mass and clean material
 - S/B Separation \rightarrow 100MSPS waveform sampling
- Usually JFETs are used due to its low 1/f noise

• Readout scheme for CDEX-large-scale

CMOS CSA ASIC for ppc-HPGe

Scheme and Layout

• Noise optimization: capacitance simulation

Cap probe: 1.379pF+0.363 pF + 0.294 pF = 2.04 pF

• Noise characterization @ 77K

• Cable Drive Capability

• Long-term stability (Preliminary)

Low Mass ASIC based VFE

- PCB Design:
 - Size: 16 mm x 14 mm
 - Substrate:
 - PTFE Thickness: 51 um
 - Cu: 18 um
 - Ni/Pd/Au: ~5um
- CSA parameters:
 - Dynamic range: 100 fC/400 fC
 - Pulse Reset
- Other components:
 - 4 resistors (can be omit)
 - 2 capacitors (can be reduced to 1)
- Interfaces:
 - 4 wires: LV(2), CAL, OUT
 - 3 spring needles for ground
 - 1 needle for detector point contact

Test Setup with HPGe detector

Mechanical Structure

Assembly

VFE-ASIC

Installation in CJPL

Oct 18, 2017

Energy Spectrum

- HPGe Detector:
 - P type, PPC, 50mm x 50mm, 500g

- Noise analysis:
 - Pulser: ENC = 26 e rms (183 eV FWHM)
 - Baseline: ENC = 23.6 e rms (165 eV FWHM)
- Flicker noise contribution: 21 e rms

$$C_{det}\cong 1pF$$
 , $I_{leak}\cong 10pA$

• Dielectric loss noise from Rogers 4350B substrate

Cryogenic Waveform Sampling

- Digital signal processing are used for HPGe detector signal processing
- Usually need 100MSPS, 12+ bit sampling and digitization

 Cables may contribute significant background for large scale HPGe detector array

20

 An ultra-low power SAR-ADC in 65nm process developed by IME Tsinghua

Cryogenic test setup

- Test results (preliminary)
 - Clock 50MHz,0.7V; Input Sine Wave,2.4MHz

Summary

- R&D Progress on CDEX readout electronics:
 - A low noise CMOS CSA working at 77 K has been successfully developed for HPGe detector for CDEX
 - A low mass front-end electronics based on the ASIC has also been developed and tested with a large volume (0.5 kg) home made HPGe detector
 - Cryogenic performance of a waveform sampling SAR ADC has been characterized and shows great potential for large scale HPGe detector array readout
- Towards custom designed readout electronics for CDEX-100
 - Summarizing R&D options \rightarrow TDR
 - Building small scale of prototypes

