

Status of PANDA Experiment

Sun Shengsen

Institute of High Energy Physics The 10th Academic Annual Meeting of High Energy Physics Branch of Chinese Society of Physics 2018.6.22. Shanghai

Facility for Antiproton and Ion Research (Darmstadt/Germany)

Construction Site

September 3, 2017

https://fair-center.eu/construction/webcam.html

pp-Annihilations: Gluon Rich Environment

Production

High Discovery Potential

 associated production
 → access to all quantum numbers (exotic and non-exotic)

limited by detector resolution

Formation

Precision Physics of Known States

not limited to $J^{PC} = 1^{--}$ as e^+e^- colliders direct formation of resonance \rightarrow access to qq quantum numbers high statistic

limited by momentum resolution \rightarrow precise measurement of mass and width

Accessible Hadrons at PANDA

PANDA Detector

- Target Spectrometer + Forward Spectrometer
- PANDA Detector:
 - Tracking System: MVD + STT + GEM + FT
 - Electromagnetic Calorimeter: Barrel + Forward + Backward + Shashilik type sampling
 - Particle Identification: DIRC + TOF + MUD + RICH
 - Magnet: Solenoid + Dipole
 - Target: Cluster-jet

Tracking Detectors: Micro Vertex Detector

Innermost detector, closest to primary interaction vertices Essential for precise determination of secondary decay vertices Barrel shell structure (4 layers), disk structure (6 pieces) in forward direction

Double sided silicon strip detectors, pixel detectors

time resolution	< 10 ns
pixel	28 μ m pos. res.
strips	14 μ m pos. res.
vertex resolution	$< 100 \ \mu$ m

Tracking Detectors: Straw Tube Tracker

4200 Ar/CO₂ (90/10) filled AI-mylar drift tubes Arranged in cylindrical volume around MVD Avalanche multiplication: gain \approx 100

Inner radius	15 cm
Outer radius	42 cm
Tube diameter	10 mm
Tube length	150 cm
$ ho/\phi$ plane resolution	150 μ m
z resolution	1 mm

Forward Spectrometer: Forward Tracker

Based on 10 mm diameter straw tubes as in central tracker Momentum acceptance better than $0.03 \times \bar{p}_{heam}$

- $(B_{dipole} \text{ scaled according to } \bar{p}_{beam})$
- Three pairs of planer tracking stations in front, behind and inside (for low momentum particles) magnet yoke

Coverage	$\pm~10^\circ$ horizontally	
	\pm 5 $^{\circ}$ vertically	
Position		
resolution	0.1 mm / layer	
Δp/p	< 1 %	

Tracking Detectors: GEMs

Station No.	1	2	3	4
Weight [kg]	20	20	30	40
Distance to target [cm]	81	117	153	189
Outer diameter [cm]	90	90	112	148
Resolution trajectory position		< 10)0 μ m	

Particle Identification

- Accurate PID key requirement to unveal many aspects of PANDA physics program
- Various dedicated high developed PID systems are able to classify particle species over whole kinematic range:

Cherenkov detectors: DIRCs, RICH

Time of Flight system Moun detection system

14

Particle Identification: Barrel DIRC

DIRC: Detection of Internally Reflected Cherenkov light Compact fused silica (quartz) bars, spherical lenses, prisms MCP-PMT read out: excellent timing, B-field performance

n_2 n_1 n_1	$n_1 \sin\theta > n_2 \sin 90^\circ$
$\beta > 1/n$	$\cos \Theta_C = 1/eta n(\lambda)$
n radiator	1.47
π/K separation	3 σ (up tp 3.5 GeV/c)
γ time res.	100 ps
PMT channels	10000

Particle Identification: Barrel TOF

Low momentum particle PID (<1GeV) Excellent time resolution of about 100 ps System of scintillator tiles read out by SiPMs (two sides) Light weight construction

Scintillator	plastic (EJ-228 or EJ-232)
Read out	SiPM (Hamamatsu)
FEE	TOF PET ASIC (PETsys electronics)

Electromagnetic Calorimetry

PANDA physics: Complete reconstruction of multi-photon and lepton-pair channels of importance Good energy and spatial resolution for photons up to 15 GeV High yield and background rejection Target spectrometer: Homogenius barrel part plus two endcaps Forward spectrometer: Sample calorimeter

Energy threshold	10 MeV	
Spacial coverage	98 % of 4 π	
Single crystal rate	up to 1 MHz	

Electromagnetic Calorimeter: Target calorimeter

- 2nd generation PbWO₄ (PWO-II), improved light yield, radiation hardness, 15744 crystals
- Operating at -25°C (×4 light yield)
- Read out: Large area APDs (2 per crystal), vaccum photo tetrodes (inner forward endcap)

Radiation length	0.9 cm
Molière radius	2.1 cm
Crystal dimensions	20 $ imes$ 2.5 $ imes$ 2.5 cm ³
Time resolution	\leq 1 ns (> 100 MeV)
Energy res. $\frac{\sigma_E}{E}$	$1\% \oplus rac{2\%}{\sqrt{E[GeV]}}$
Spacial resolution	\leq 1.5 mm

Electromagnetic Calorimetry: Forward Calorimeter

Shashlik type sampling calorimeter: Lead absorbers, plastic scintillators, light collection by wavelength shifting fibers, PMT readout

Cluster-Jet Target

- Target thickness ρ > 2 x 10¹⁵ hydrogen atoms/cm² at PANDA IP
- Well defined vertex point
- Cluster size on nanometer scale
 - homogeneous target beam with no time structure
- Target thickness continuously adjustable over magnitudes
- Non-destructive target thickness monitor system for online thickness analysis

Ideal combination of superconducting solenoid (target region) and dipole (forward spectrometer, below $5^{\circ}/10^{\circ}$)

	Solenoid	Dipole
Field	2 T	1 T
Diameter	inner/outer 1.9/2.3 m	1 m $ imes$ 3 m opening
Length	4.9 m	2.5 m
Weight	300 t	220 t

Solenoid:

Instrumented flux return Field inhomogeneity $\leq 2\%$ Dipole ramping operation fully synchronous with storage ring, ramp speed 1.25%/s

Magnets

Data Aquisition

High interaction rate, wide physics objectives: triggerless DAQ

Time distribution: SODA

Time tag / hit

Selection after event building

22

Storage

PANDA Schedule

PANDA Phases

Phase 0

Currently PANDA detectors are being built. They will be used in other excellent experiments until the experimental hall is available. 3 Experiments Software-Development

Phase 1 First physics experiments with the PANDA start setup using antiprotons

Phase 2

Experiments using the full setup

Phase 3

Experiments beyond MSV (needs RESR)

Start / Full Setup (Phase 1 & 2)

Summary

- The civil construction advances well, and HESR is also well in time line
- Installation window will be in 2022
- Detector design of PANDA experiment is presented
- The full setup of PANDA covers the broadest physics case in hadron physics.