

Charged Lepton Flavor Violation Search at COMET

Zhang Yao Institute of High Energy Physics, China On behalf of COMET experiment group

Charged Lepton Flavor Violation

- Quark mixing and neutrino oscillation was observed
- μe conversion can occur in the extended SM, but it is almost not observable

Charged LFV = new physics

Muon-e conversion

• Nuclear Muon Capture

 μ^- +(A,Z) $\rightarrow \nu_{\mu}$ +(A,Z-1)+ γ

- Electrons from Muon DIF
- Cosmic ray,
- False tracking, etc

Overview on COMET (**CO**herent **M**uon **E**lectron **T**ransition)

Located in the Japan Proton **Accelerator Research Complex** (J-PARC) in Tokai, Japan.

COMET Phase-I:

Search μ - + Al \rightarrow e- + Al with 100 times improvement of single event sensitivity (SES)

23 June 2018

COMET Phase-I and Phase-II

Detectors: Cylindrical drift chamber Straw Tracker + ECAL

Goals of Phase-I

1. Background measurements

direct measurement of potential background sources for the full COMET experiment by using the actual COMET beam line

2. Search for $\mu\text{-}e$ conversion

a search for μ -e conversion at the intermediate sensitivity which would be 3.1×10^{-15} which is100-times better than the present limit (SINDRUM-II)

3. Beam characterization

Detectors: Straw Tracker + ECAL

Goal of Phase- II

search of μ-e conversion

single event sensitivity: 2.7×10^{-17} which is 10,000 better than the current limit

Overview of COMET Phase-I

- 1. Proton on production targets and produce pions
- 2. Pions decay to muons and transported to detector sections
- 3. Muons stopped and decay in the stopping target

Proton Beam

- 3kW proton prompt beam:
 - ~ 10¹⁹ protons on proton targets (in 145 days running time)
- Bunch structure of proton beam
 - Bunch size ~ 10⁷ protons on target (POT)
 - Bunch spill/width ~100ns
 - Extinction factor 3x10⁻¹¹
 - Bunch separation time = 1170ns.

Time structure of proton beam bunch

Muon Beam

- 90 degree and long muon transport solenoid
- High efficiency and stopping rate for ~ 40 MeV/c muons
- Collimator to block high momentum muons ~ 75 MeV/c

Initial momentum of stopped muons and all muons

The bird view of muon beam intensity

Yield (per proton):	After muon transport section	Stopped in muon target
Muons	5.0×10^{-3}	4.7×10^{-4}
Pions	3.5×10^{-4}	3.0×10^{-6}

Muon and pion yields per proton at end of the muon beam line and stopped in the stopping target

Phase-I Cylindrical Detector(CyDet)

- Cylindrical Drift chamber (CDC)
 - Large inner radius : reduce beam flash
 - Low mass : Reduce multiple scattering
 - All stereo wires: Good momentum resolution
 - Spatial resolution : ~150 μm
- Trigger hodoscope
 - Cherenkov radiator + plastic scintillator
- Al muon-stopping target (17 disks)

CDC under cosmic ray test

Track Hit Selection

 Hit selection using Gradient Boosted Decision Trees (GBDT) and Reweighted Inverse Hough Transform

90°

135

- Classify hits using local, neighbor and shape features
- Fit initial track with random hit collection (RANSAC)

Separation between background and signal hits is clear 270° 99 % of background can be rejected while keeping 99% of the signals

CyDet Tracking Performance

Acceptance after geometry cuts

	Single-track	Multi-track	
N _{CDC} hit >0	0.34	0.17	
Hit 2 CTH layers	0.21	0.13	
Hit CTH indirectly	0.19	0.12	
2 CTH neighbor pairs	0.16	0.10	

Tracking Efficiency

	Single- turn	Multi- turn	Total
Geometrical acceptance	0.16	0.1	0.26
Tracking efficiency after Quality cut	0.71	0.72	
Total	0.11	0.072	0.18

Track finding algorithms are under development Track fitting is base on genfit

Momentum resolution of 105 MeV/c electrons

Momentum resolution < 300 keV

Single Event Sensitivity (SES)

$$SES = Br(\mu^{-} + Al^{-} > e^{-} + Al) = (N_{\mu} \cdot f_{cap} \cdot f_{gnd} \cdot A_{\mu-e})^{-1}$$

 f_{cap} =0.61 (Al), fraction of muon capture f_{gnd} = 0.9, the fraction of the μ -e conversion to the ground state in the final state $A_{\mu-e}$ =0.041, is the signal acceptance N_{μ} is the number of muons stopping in the muon target

 With 146 days of physics measurement, the SES is calculated to be 3 x 10⁻¹⁵, which is 100 times better than the current limit (7 x 10⁻¹⁵ 90% C.L. upper limit)

Total number of background event is 0.032 during the data taking at momentum window (103.6 < p < 106)

Facility Status

Contribution of Chinese Group --- Development of drift chamber readout

- The production of 128 readout board (RECBE) has finished by IHEP, China in 2015
 - The design is based on BELLE-II CDC readout board
 - 48 input channels
 - TDC Time resolution: 1 nsec
 - ADC Sampling rate : 30 MHz
- The performance test, threshold scanning, aging test and irradiation test have been done
- 73 RECBEs have been send to Japan

COMET-CDC readout board

128 pcs RECBE in the dry box Automatic test system

irradiation test

Contribution of Chinese Group --- Phase-I design optimization

- Beam simulation
- Experiment optimization
 - Production target, Collimator ,CTH
- Sensitivity and Backgrounds
 - Muon decay in orbit (DIO)
 - Radiative muon capture (RMC)
 - Radiative pion capture (RPC)
 - anti-proton
 - Other beam related backgrounds
 Production Target Length Optimization

Collimator after optimization

23 June 2018

Contribution of Chinese Group

----CDC track finding

中国物理学会高能物理分会

- Create possible hit list candidates 1.
- Get track circle by Hough transform 2.
- 3. Linear fitting on Z-Phi plane by minimize the distance between circle track and wire
- Peak finding in the track parameter space 4. which include all track candidates

Linear Fitting

for All Hit Combinations

Hit

Correct Combi. Wrong Combi.

Ζ

 Z_0^{2nc}

Z015

 Z_0

Multi-turn track

Contribution of Chinese Group ---CDC Simultaneous multi-turn track fitting

- 1. Based on genfit2
- 2. Multi track fitting: Simultaneous fit different turn hypothesis
- 3. Hit competition: Weighted mean assignment for each hit at same detector plane
- 4. Annealing: Iteratively fitting with the changing of weight to avoid local minimum

weighted measurement for multi-turn tracks one hit associated with two tracks

measured drift
 circle
 fitted doca circle
 fitted track
 CDC wire

The possibility of hit *i* assigned to track *j* is defined as matrix Φ

 $(\Phi)_{ij} = \varphi_{ij} = \varphi(y_i; Hx_j, V_i),$

Assignment weight of hit i to track j

Contribution of Chinese Group

--- field map calc. and mass production on super-computer

Magnetic filed calculation

- Super computer Tianhe2
 - Tianhe2 is the second fastest HPC in the world
 - The COMET mass production have been tested on Tianhe2 (one bunch)
 - www.vat-sen UNIVERSITY MATIONAL SUPERCOMPUTER CENTER IN GUANGZHOU

Super computer Tianhe2An event display of 1% of a bunchTianhe2 is the site with largest number of cores in COMET

Field map(Bz) at detector region

The COMET collaboration

16 countries, 39 University or institute, 195 collaborator

高能所,南京大学,中山大学,北京大学

The COMET Collaboration

R. Abramishvili¹², G. Adamov¹², R. Akhmetshin^{6,34}, V. Anishchik⁴, M. Aoki³⁵, Y. Arimoto¹⁹, I. Bagaturia¹², Y. Ban³, D. Bauer¹⁵, A. Bondar^{6,34}, Y. Calas⁷, S. Canfer⁵⁶, Y. Cardenas⁷, S. Chen³¹, Y. E. Cheung³¹, B. Chiladze⁵⁸, D. Clarke⁵⁶, M. Danilov^{16,28}, P. D. Dauncey¹⁵, W. Da Silva²⁵, C. Densham⁵⁶, G. Devidze⁸⁸, P. Dornan¹⁵, A. Drutskoy^{16,28}, V. Duginov¹⁷, L. Epshteyn^{6,35,54}, P. Evtoukhovich¹⁷ S. Fayer¹⁵, G. Fedotovich^{6, 54}, M. Finger⁸, M. Finger Jr⁸, Y. Fujii¹⁹, Y. Fukao¹⁹ E. Gillies¹⁵, D. Grigoriev^{6, 35, 54}, K. Gritsay¹⁷, E. Hamada¹⁹, R. Han¹, K. Hasegawa¹⁹, I. H. Hasim³⁵, O. Hayashi³⁵, Z. A. Ibrahim²⁶, Y. Igarashi¹⁹, F. Ignatov^{6, 34}, M. Iio¹⁹ M. Ikeno¹⁹, K. Ishibashi²³²⁴, S. Ishimoto¹⁹, T. Itahashi³⁵, S. Ito³⁵, T. Iwami³⁵, X. S. Jiang², P. Jonsson¹⁵, T. Kachelhoffer⁷, V. Kalinnikov¹⁷, F. Kapusta²⁵, H. Katayama³⁵, K. Kawagoe²³²⁴, N. Kazak⁵, V. Kazanin^{6,34}, B. Khazin^{6,34} A. Khvedelidze^{17,12}, T. K. Ki¹⁹, M. Koike⁴², G. A. Kozlov¹⁷, B. Krikler¹⁵, A. Kulikov¹⁷, E. Kulish¹⁷, Y. Kuno³⁵, Y. Kuriyama²², Y. Kurochkin⁵, A. Kurup¹⁵, B. Lagrange^{15,22}, M. J. Lee¹³, H. B. Li², W. G. Li², R. P. Litchfield¹⁵, T. Loan³², D. Lomidze¹², I. Lomidze¹², P. Loveridge³⁶, G. Macharashvili⁵⁸, Y. Makida¹⁹, Y. Mao⁵, O. Markin¹⁶, Y. Matsumoto⁸⁵, A. Melnik⁵, T. Mibe¹⁹, S. Mihara¹⁹, F. Mohamad Idris²⁶, K. A. Mohamed Kamal Azmi²⁶, A. Moiseenko¹⁷, Y. Mori²², M. Moritsu³⁵, Y. Nakai²³²⁴, T. Nakamoto¹⁹, Y. Nakazawa³⁵, J. Nash²⁹, H. Natori¹², J. -Y. Nief⁷, M. Nioradze³⁸, H. Nishiguchi¹⁹, T. Numao³⁹, J. O'Dell³⁶, T. Ogitsu¹⁹, K. Oishi²⁵²⁴, K. Okamoto³⁵ T. Okamura¹⁹, C. Omori¹⁹, T. Ota³⁷, J. Pasternak¹⁵, C. Plostinar⁵⁶, V. Ponariadov⁴⁵, A. Popov^{6,34}, V. Rusinov^{16,28}, B. Sabirov¹⁷, N. Saito¹⁹, H. Sakamoto³⁵, P. Sarin¹⁴, K. Sasaki¹⁹, A. Sato³⁵, J. Sato³⁷, Y. K. Semertzidis^{13, 18}, N. Shigyo²³²⁴, D. Shoukavv⁵, M. Slunecka⁸, A. Straessner⁴⁰, D. Stöckinger⁴⁰, M. Sugano¹⁹, Y. Takubo¹⁹ M. Tanaka¹⁹, S. Tanaka²³²⁴, C. V. Tao⁵², E. Tarkovsky^{16,28}, A. M. Teixeira⁹, Y. Tevzadze³⁸, T. Thanh⁵², N. D. Thong³⁵, J. Tojo²⁵²⁴, M. Tomasek¹¹, M. Tomizawa¹⁹, N. H. Tran³⁵, H. Trang³², I. Trekov³⁸, N. M. Truong³⁵, Z. Tsamalaidze¹⁷⁷, J. N. Tsverava^{17,38}, T. Uchida¹⁹, Y. Uchida^{15,35}, K. Ueno¹⁹, E. Velicheva¹⁷, A. Volkov¹⁷ V. Vrba¹¹, W. A. T. Wan Abdullah²⁶, M. L. Wong³⁵, T. S. Wong³⁵, C. Wu^{2,31} H. Yamaguchi²⁵²⁴, A. Yamamoto¹⁹, M. Yamanaka²⁴, T. Yamane⁸⁵, Y. Yang²³²⁴, W. Yao², B. K. Yeo¹³, H. Yoshida³⁵, M. Yoshida¹⁹, Y. Yoshii¹⁹, T. Yoshioka²³²⁴, Y. Yuan², Yu. Yudin^{6,34}, J. Zhang², Y. Zhang², K. Zuber⁴⁰

¹North China Electric Power University, Beijing, People's Republic of China ²Institute of High Energy Physics (IHEP), Beijing, People's Republic of China ³Peking University, Beijing, People's Republic of China ⁴Belarusian State University (BSU), Minsk, Belarus B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus ⁶Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia ⁷Computing Center of the National Institute of Nuclear Physics and Particle Physics (CC-IN2P3), Villeurbane, France ⁸Charles University, Praque, Czech Republic ⁹Laboratoire de Physique de Clermont, CNRS-IN2P3 Aubière, France ¹⁰Czech Technical University, Prague, Czech Republic ¹¹Georgian Technical University (GTU), Tbilisi, Georgia ¹²Insitute for Basic Science, Daejeon, Korea ¹³Indian Institute of Technology, Bombay, India ¹⁴Imperial College London, London, UK ¹⁵Institute for Theoretical and Experimental Physics (ITEP), Russia