

底强子半轻衰变中的 轻子普适性检验

黄文谦

代表LHCb合作组 中国科学院大学

提纲

- 1. 轻子普适性介绍
- 2. LHCb上的轻子普适性测量
 - $\mathcal{R}(D^*)$ $\tau \rightarrow \mu$ 衰变测量
 - $\mathcal{R}(D^*)$ $\tau \to \pi^+ \pi^- \pi^+$ 衰変测量
 - $\mathcal{R}(J/\psi) \tau \rightarrow \mu$ 衰变测量
- 3. 结论与展望

轻子普适性

- 标准模型假设,三代轻子与规范波色子有相同的耦合强度,称为轻子 普适性。
- 轻子间差异仅仅体现在质量不同。
- 新物理:假设有过程,与更重的轻子有更强的耦合。
- $B(b \rightarrow c\tau\nu)/B(b \rightarrow cl\nu)$ 相对衰变分支比将在 $O(10^{-2})$ 上检验标准模型。

轻子普适性在其他系统中的检验

• 较轻粒子的全轻/半轻衰变中没有发现显著偏离:

 $J/\psi \rightarrow ll, \tau \rightarrow l\nu\bar{\nu}, \pi \rightarrow l\nu, K \rightarrow \pi l\nu, \ldots$

- $Z \rightarrow ll$ 没有发现偏离。
- $W \rightarrow l\nu + \tau$ 过程相对有2 σ 偏离:

$$\frac{\mathcal{B}(W \to \mu \overline{\nu}_{\mu})}{\mathcal{B}(W \to e \overline{\nu}_{e})} = 0.993 \pm 0.019$$

$$\frac{\mathcal{B}(W \to r \overline{\nu}_{\tau})}{\mathcal{B}(W \to e \overline{\nu}_{e})} = 1.063 \pm 0.027$$

$$\frac{\mathcal{B}(W \to r \overline{\nu}_{\tau})}{\mathcal{B}(W \to \mu \overline{\nu}_{\mu})} = 1.070 \pm 0.026$$

• B介子FCNC过程 $\mathcal{R}(K^{(*)})$ 有>2 σ 偏离。

使用B半轻衰变检验轻子普适性: R(D^(*))

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} l \overline{\nu}_{l})}$$

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)}l\overline{\nu}_{l})}$$

 $l = e, \mu$

实验	使用衰变道	au reconstruction	偏离SM预期
BaBar 2012	$\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}l\bar{\nu}_{l})$	$\tau \to l \nu \bar{\nu}$	$+3.4\sigma$
Belle 2015	$\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}l\bar{\nu}_{l})$	$ au o l \nu ar{ u}$	$+1.8\sigma$
LHCb 2015	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$	$ au o \mu u \overline{ u}$	+2.10
Belle 2016	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} l^- \bar{\nu}_l)$	$\tau ightarrow l \nu \bar{\nu}$	+1.6 0
Belle 2017	$\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^* l^- \bar{\nu}_l)$	$ au^- ightarrow \pi^- u_ au$, $ ho^- u_ au$	<1 <i>o</i>
LHCb 2017	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$	$\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu$	$+1.0\sigma$

LHCb对轻子普适性检验

优势:海量事例。径迹重建,初级与次级顶点区分,μ与D事例高 触发效率。

困难:没有质心能量约束、missing energy,使信号没有特征峰。

分析方法

- 精确的次级顶点重建:
 Soft π for D* 顶点, 3π for τ 衰变顶点。
- Charge & neutron isolation 方法, 筛选掉大部分物理本底。 D**

• 部分重建方法,近似重建出粒子信息。

 $\frac{(p_B)_z}{m_B} \simeq \frac{(p_{visible})_z}{m_{visible}} \rightarrow |p_B| = (p_B)_z \sqrt{1 + \tan^2 \alpha}$

$$\begin{array}{c} p_{\tau}^{\mu} = p_{3\pi}^{\mu} + p_{\nu}^{\mu} \\ (p_{\nu}^{\mu})^{2} = 0 \end{array} \end{array} \right\} \rightarrow p_{\tau}^{\mu}; \quad \begin{array}{c} p_{B}^{\mu} = p_{D^{*}}^{\mu} + p_{\tau}^{\mu} + p_{\nu}^{\mu} \\ (p_{\nu}^{\mu})^{2} = 0 \end{array} \right\} \rightarrow p_{B}^{\mu}$$

Phys. Rev. Lett. 115, 111803 (2015)

$\mathcal{R}(D^*)(\tau \rightarrow \mu)$ 测量

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}, \begin{cases} \tau^- \to \mu^- \nu_{\tau} \overline{\nu}_{\mu} \\ D^{*+} \to D^0 \pi^+ \\ D^0 \to K^- \pi^+ \end{cases}$$

- 形状因子的误差可以部分抵消,理论 计算准确。
- $\mathcal{B}(\tau^+ \to \mu^+ \bar{\nu}_\tau \nu_\mu) = (17.41 \pm 0.04)\%$
- 使用B质心系中的运动学变量进行三 维拟合:
 - μ能量 *E*^{*}_μ.
 - 丢失质量: $m_{miss}^2 = (p_B^{\mu} - p_{D*}^{\mu} - p_l^{\mu})^2$
 - 转移4-动量

$$q^2 = \left(p_B^{\mu} - p_{D*}^{\mu}\right)^2$$

Phys. Rev. Lett. 115, 111803 (2015)

$\mathcal{R}(D^*)(\tau \rightarrow \mu)$ 测量

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}, \begin{cases} \tau^- \to \mu^- \nu_{\tau} \overline{\nu}_{\mu} \\ D^{*+} \to D^0 \pi^+ \\ D^0 \to K^- \pi^+ \end{cases}$$

- 形状因子的误差可以部分抵消,理论 计算准确。
- $\mathcal{B}(\tau^+ \to \mu^+ \bar{\nu}_\tau \nu_\mu) = (17.41 \pm 0.04)\%$
- 使用B质心系中的运动学变量进行三 维拟合:
 - μ能量 *E*^{*}_μ.
 - 丢失质量: $m_{miss}^2 = (p_B^{\mu} - p_{D*}^{\mu} - p_l^{\mu})^2$
 - 转移4-动量 $q^2 = (p_B^{\mu} - p_{D*}^{\mu})^2$

 $\mathcal{R}(D^*)(\tau \to \mu)$ 测量

 $\mathcal{R}(D^*)(\tau \rightarrow \mu)$ 分析拟合结果(小q²)

中国物理学会高能物理分会第十届全国 会员代表大会暨学术年会

 $\mathcal{R}(D^*)(\tau \rightarrow \mu)$ 分析拟合结果(tq^2)

中国物理学会高能物理分会第十届全国 会员代表大会暨学术年会

 $\mathcal{R}(D^*)(\tau \to \mu)$ 结果

- 使用 LHC 3.0fb⁻¹ 2011 & 2012 @ 7TeV & 8TeV 数据。
- $\mathcal{R}(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst), 偏离理论预期2.1 \sigma$ 。

Phys. Rev. Lett. 120, 171802 (2018)

$\mathcal{R}(D^*)(\tau \rightarrow 3\pi)$ 测量

- 使用 $B \rightarrow D * 3\pi$ 作为归一化道。
- 3π重建τ衰变顶点,对τ飞行距离 进行选择:
- D * 3π极大压低(10³),
- 35% 信号效率,
- 剩余D*D事例。

 $\mathcal{R}(D^*)(\tau \rightarrow 3\pi)$ 测量-双粲事例筛除与确定

 $X_b \to D^{*-}D_s^+X$:10倍信号 $X_b \to D^{*-}D^+X$:1倍信号 $X_b \to D^{*-}D^0X$:0.2倍信号

- 使用包括isolation方法在内的变量训练
 BDT:
 - 低端研究双粲本底各成分组分。
 - 高端拟合信号。
- D*D事例质量峰:归一化Ds事例。
- 2π/3π质量谱的共振结构:
 - $\tau \rightarrow a_1 \rightarrow \rho \pi$

 $\mathcal{R}(D^*)(\tau \rightarrow 3\pi)$ 分析 BDT分bin拟合结果(左图)

对比 $\tau \rightarrow \mu$ 重建方法, $\tau \rightarrow 3\pi$ 可以更好地区分信号与本底。

 $B \to D^{*-}D^{0}(X)$

Comb. bkg

16

 $\mathcal{R}(D^*)(\tau \to 3\pi)$ 分析结果

使用 LHC 3.0fb⁻¹ 2011 & 2012 @ 7TeV & 8TeV 数据。

 $\frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \pi^- \pi^+ \pi^-)} = 1.93 \pm 0.13_{stat} \pm 0.17_{syst}$

 $R(D^{*-}) = 0.285 \pm 0.019_{stat} \pm 0.025_{syst} \pm 0.13_{ext}$, 超出标准模型1.0 σ 。

2018/6/23

 $\mathcal{R}(D^*)(\tau \rightarrow 3\pi)$ 误差

Contribution	Value %
Fit bias	< 0.1
Form factors (template shape)	0.7
Form factors (efficiency)	1.0
τ polarization effects	0.4
Other τ decays	1.0
$3\pi\pi^{0}/3\pi$	0.7
Signal efficiencies (Monte Carlo statistics)	1.7
Normalization channel efficiency (Monte Carlo statistics)	1.6
$D^{**}\tau\nu$ contribution	2.3
B_s^0 feed-down	1.5
D^* 3π X from B decays yield	2.1
D^* 3π X from B decays Dalitz	1.9
$D_s^+ \rightarrow 3\pi X$ decay model	2.5
D_s^+, D^0 and D^+ templates shape	2.9
$B \to D^{*-}D_s^+X$ and $B \to D^{*-}D^0X$ decay model	2.6
Combinatorial background	0.7
Trigger acceptance shape	1.2
LOHadron trigger efficiency	1.0
Stripping	2.0
Selection	2.0
Charged Isolation criterium	1
Normalization channel	1.0
PIDCalib weight	1.3
MC statistics	4.1
Bias due to empty bins in templates	1.3
Total internal error	8.9
External BR D^* 3 π	4.3
External error BR $D^*\mu\nu$	2.1
Total External error	4.8

Phys. Rev. Lett. 120, 121801 (2018)

 $V_{\tau'}$

 B_c^+

Prime Vertex

 $\mathcal{R}(J/\psi)(\tau \rightarrow \mu)$ 测量

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+ v_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi\mu^+ v_{\mu})}, \begin{cases} \tau^+ \to \mu^+ \overline{v}_{\tau} v_{\mu} \\ J/\psi \to \mu\mu \end{cases}$$

- 与*R*(*D**)方法一致。
- B_c 衰变时间 $\tau(B_c) < \tau(B_{u,d,s})$ 。

中国物理学会高能物理分会第十届全国 会员代表大会暨学术年会

$\mathcal{R}(J/\psi)(\tau \rightarrow \mu)$ 测量结果

- 使用 LHC 3.0fb⁻¹ in 2011 & 2012 @ 7TeV & 8TeV 数据。
- $B_c^+ \rightarrow J/\psi \tau^+ \nu_\tau$ 信号显著性为 3σ 。
- $\mathcal{R}(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst),$ 超出理论2 σ 。

结论与展望

- 使用B强子半轻衰变检验轻子普适性,可以用来探测新物理。
 - SM理论精度高,统计量大,对新物理敏感。
- LHCb探测器优秀性能,使用轻子与强子重建测量了 $\mathcal{R}(D^*)$ 与 $\mathcal{R}(J/\psi)$ 。
 - $\mathcal{R}(D^*)$ 超出标准模型预言3.4 σ , $\mathcal{R}(J/\psi)$ 超出标准模型2 σ 。

- R(J/ψ), R(D), R(Λ^(*)_c), R(D_s) 等分析正在进行。
- LHCb第二轮取数即将结束,有更多统计量以提高测量精度。
- 正在开发快速模拟方法,提高MC统计量。

University of Chinese Academy of Sciences

谢谢!

Systematic uncertainties

[PRL 113 (2014) 151601]

	$B^+ \rightarrow J/\psi (\mu^+ \mu^-) K^+$	$B^+ \rightarrow K^+ \mu^+ \mu^-$	$B^+ \rightarrow J/\psi (e^+ e^-) K^+$	$B^+ \rightarrow K^+ e^+ e^-$
sig models	-	-	-1.0%	-1.0%
bkg models	-	-	+0.0%	+0.5%
bin migration	-	-	-	1.6%
trigger efficiency	-	3%	-	3%
Kaon PID	+0.2%	-0.1%	-2.0%	-1.9%
Electron PID	-	-	+3.0%	+3.0%
Muon PID	-0.1%	+0.1%	-	-
K-e veto	-	-	+0.1%	+0.3%

• $R_{K} = 0.745^{+0.090}_{-0.074} \pm 0.036$, compatible with SM within 2.6 σ

