

Inclusion of up-to-date parton distribution function and nuclear shadowing in the AMPT model

Chao Zhang¹(张潮) Zi-Wei Lin^{1,2}, ShuSu Shi¹ and Liang Zheng¹

Central China Normal University¹ East Carolina University²

Outline

- 1. Motivation
- 2. Methods & Strategies
- 3. Results

Tuning parameters of two component modelTuning fragmentation parameters

- 4. Next step for heavy flavor in AMPT
- 5. Summary

Motivation

- The *heavy flavor* production is sensitive to the gluon distribution (according to pQCD calculation).
- Upgrade the parton distribution function
 (*PDF*) in initial condition is important.

Structure of AMPT (string melting)

PDF: Parton Distribution Function

> Duke-Owens: used in the current published AMPT model. *Outdated*

AMPT model: valid for wide energy range, especially LHC energies when minijet production reaches to a very small-x region, where gluon distribution is much *higher* than Duke-Owens parametrization. *Update the PDF* is important.

\succ HIJING 2.0 work : GRV94L PDF.

Wei-Tian Deng PHYSICAL REVIEW C 83, 014915

Spatial Dependent Nuclear PDFs

Influence of PDF and nPDFs

- > PbPb collision: 2.76 TeV, a factor of ~ 3 larger for both p_T and pseudo-rapidity, mainly within |eta| < 5.
- ▶ pp collision: 13 TeV, both enhancement in p_T and pseudo-rapidity, 20% increase mainly within |eta| < 3.
- \blacktriangleright We need to *tune* the parameters.

Methods and Strategies

Parameter tuning strategy

1. Total and inelastic cross section fitting: to get the key input parameter p_0 and σ_{soft} in the two component model.

2. Lund fragmentation parameter (*a*&*b*) tuning: use the charged particle pseudorapidity distributions and transverse momentum spectra. $f(z) \propto z^{-1}(1-z)^{\mathbf{a}}e^{(-\mathbf{b}m_{\perp}^2/z)}$

Step 2 have no influence on the step 1, thus we can do the step 1 first and then step 2.

The HIJING Two Component Model

Tuning Method

A relative residual sum of squared is defined as the target function to be minimized allowed p_0 and σ_{soft} parameters

$$\text{Minimize } \chi^2 = \frac{(\sigma_{tot_ampt} - \sigma_{tot_fit})^2}{\sigma_{tot_fit}} + \frac{(\sigma_{el_ampt} - \sigma_{el_fit})^2}{\sigma_{el_fit}}$$

Tuning of p_0 and σ_{soft}

- ▶ p_0 have strong energy dependence, while energy dependence of σ_{soft} is weaker.
- When collision energy √S_{NN}>10 GeV, we fit both σ_{tot} and σ_{el}.
- ➢ When $\sqrt{S_{NN}}$ <10 GeV, we only fit the inelastic cross section, since jet cross section is completely *switched off* below 10 GeV in HIJING.

a&b Tuning

- ➢ We use charged particle pseudo-rapidity distributions and transverse momentum spectra to tune the Lund parameters *a* and *b*.
- > Larger *a* typically gives *larger* pseudo-rapidity distributions, smaller *b* typically leads to a more *flat* p_T spectrum.
- \succ a=0.3, b=0.5 agrees with data in general.

UA5 Collaboration, Z. Phys. C – Particles and Fields 33, 1-6(1986).CDF Collaboration, Phys. Rev. D 41, 2330 (1990).CMS Collaboration, PRL 105, 022002 (2010).ALICE Collaboration, Physics Letters B 751 (2015) 143–163 .UA1 Collaboration, C. Nuclear Physics B335 (1990) 261-287.CDF Collaboration, Phys. Rev. Lett. 61, 1819 (1988).

a&b Tuning

- ➢ We use charged particle pseudo-rapidity distributions and transverse momentum spectra to tune the Lund parameters *a* and *b*.
- > Larger *a* typically gives *larger* pseudo-rapidity distributions, smaller *b* typically leads to a more *flat* p_T spectrum.
- \rightarrow a=0.3, b=0.5 agrees with data in general.

UA5 Collaboration, Z. Phys. C – Particles and Fields 33, 1-6(1986).CDF Collaboration, Phys. Rev. D 41, 2330 (1990).CMS Collaboration, PRL 105, 022002 (2010).ALICE Collaboration, Physics Letters B 751 (2015) 143–163 .UA1 Collaboration, C. Nuclear Physics B335 (1990) 261-287.CDF Collaboration, Phys. Rev. Lett. 61, 1819 (1988).

Heavy Flavor Production in AMPT

- Channel 12, 53, 81 and 82 can produce charm in current AMPT model (*double counting* problem).
- We now only allow channels 81, 82 to produce charm, all light flavor productions are through channel 12, 53.

11	f + f' -> f + f'
12	f + fb -> f' + fb'
13	f + fb -> g + g
14	f + fb -> g + gamma
18	f + fb -> gamma + gamma
28	f + g -> f + g
29	f + g -> f + gamma
53	g + g -> f + fb
68	g + g -> g + g
81	q + qb -> Q + QB, massive
82	g + g -> Q + QB, massive

Next Step For Heavy Flavors in AMPT

- 1. No transport model have been used to describe the heavy flavors production in HIC.
- 2. With this updated AMPT model, we will have a better description of many observables in the experiments such as particle spectra, event anisotropy etc...

Summary

- 1. The *necessity* for updated PDF and nuclear shadowing modification to describe heavy flavors.
- 2. We have used a *systematic strategy* to determine the parameters. as well as tuning the Lund fragmentation parameters with the latest experimental data.
- 3. Fit the energy dependence of p_0 and σ_{soft} as well as tuning the parameters with the latest dataset.

Summary

- 1. The *necessity* for updated PDF and nuclear shadowing modification to describe heavy flavors.
- 2. We have used a *systematic strategy* to determine the parameters. as well as tuning the Lund fragmentation parameters with the latest experimental data.
- 3. Fit the energy dependence of p_0 and σ_{soft} as well as tuning the parameters with the latest dataset.

